Автор работы: Пользователь скрыл имя, 26 Ноября 2013 в 20:24, контрольная работа
Законы сохранения импульса и момента импульса выполняются при любом взаимодействии, об этом свидетельствуют многочисленные экспериментальные данные. Таким образом, эти законы справедливы в мега-, макро- и микромире, и называются великими законами сохранения.
В мега мире закон сохранения момента импульса объясняет наблюдаемую форму галактик. Каждая галактика образовывалась из очень большой массы газа (порядка 1039—1040 кг), обладающей первоначальным моментом импульса.
1.Использование законов сохранения импульса и момента импульса в современной цивилизации
2.Поясните понятие инертной и гравитационной массы. Исходя из каких фактов делается утверждение об их эквивалентности? Чтобы изменилось в окружающем мире, если бы эти массы не были пропорциональны друг другу.
3.Поясните принцип Ле Шателье. Найдите примеры применения этого принципа вне химии
Таким образом, все тела солнечной системы построены из небольшого числа элементов (около 28 номера таблицы Менделеева распространенность существенно падает) и имеют единое происхождение. Метеориты, большинство которых оказались очень древними, дали ценную научную информацию об истории возникновения отдельных тел солнечной системы. По оценкам, основанным на радиоактивном распаде урана, тория, рубидия и калия, их возраст около 4,5—4,6 млрд лет, т. е. совпадает с возрастом Земли и Луны. В них насчитываются примерно 66 минералов, большинство из них похожи на земные. Вероятно, метеориты образовались тогда же, что и планеты земной группы. Согласно принятой в геологии классификации, все элементы разделены на четыре группы. Атмофильные элементы склонны накапливаться в атмосферах; литофильные образуют твердые оболочки планет; халькофильные создают соединения с серой, подобные меди; сидерофильные способны растворяться в сплавах железа.
Планеты земной группы, как предполагают ученые, когда-то были похожи друг на друга.
Разница в климате возникла из-зи разного круговорота углекислого газа при обмене им между корой и атмосферой. Как и водяной пар, углекислый газ является газом парниковым, так как он, пропуская солнечный свет, поглощает тепло планеты и переизлучает часть его к поверхности.
Оценки сделанные М. Хартром, показали снижение содержания углекислого газа в атмосфере со скоростью, точно компенсирующей возрастание светимости Солнца. Он провел аналогичные рассчеты для иных, чем у Земли, расстояний от Солнца и получил, что при расстоянии от Солнца меньше 1 а. Е. На 5% атмосфера бы нагрелась настолько, что океаны испарились бы в результате разгоняющегося парникового эффекта, а на расстоянии дальше на 1% а. Е. От Солнца имело бы разгоняющееся оледенение. Только в узкой полоске расстояний между 0,95 и 1,01 а.е. Земля смогла бы избежать этой катастрофы климата.
Нелепо предполагать, что это редкая случайность – появление жизни на нашей планете в таком узком кольце Солнечной системы. Скорее всего, содержание углекислого газа менялось в соответствии с изменением температуры поверхности Земли. Этот режим саморегуляции обеспечил нашей планете устойчивость климата.
Эта обратная связь могла
обеспечиваться карбонатно-силикатным
геохимическим циклом, который способен
отвечать за 80% обмена углекислым газом
между планетой и ее атмосферой на
временных интервалах более 0,5 млн.
лет.
Началом цикла можно считать растворение содержащегося
в атмосфере углекислого газа в водяных
капельках и образование угольной кислоты.
Дождевые осадки разрушали горные породы,
состоявшие из соединений кальция, кремния
и кислорода. Угольная кислота вступает
в реакцию с породами на поверхности, высвобождая
ионы кальция и бикарбоната, которые поступают
в грунтовые воды, а затем в океан, где
оседают в скелетах и раковинах планктона
и других организмах, состоящих из карбоната
кальция (СаСО3). Останки этих организмов
откладываются на океанском дне, формируя
осадочные породы. Дно моря расширяется,
через много тысяч лет эти породы приблизятся
к краям континентов. Дно подтягивает
их под берег, они попадают в земные, недра,
где на них действуют давление и температура.
Карбонат кальция соединяется с кремнием,
образуя силикатные породы и выделяя углекислый
газ, т. е. происходит карбонатный метаболизм.
Газ попадает вновь в атмосферу через
извержения вулканов и срединно-океанические
хребты. Цикл завершается (рис. 129).
Изменения температуры земной поверхности влияют на количество углекислого газа в атмосфере и величину парникового эффекта. Пусть по какой-то причине на Земле стало прохладнее. При более низкой температуре меньше воды испарится из океана в атмосферу, меньше выпадет дождей, и уменьшится эрозия почвы, вызванная осадками. Тогда скорость покидания атмосферы углекислым газом уменьшится, а скорость регенерации его в процессе карбонатного метаболизма и поступления в атмосферу останется на прежнем уровне. Это приведет к накоплению СО2, усилению парникового эффекта и восстановлению более теплого климата. Если по какой-то причине на Земле произошло потепление, то обратная связь сработает в другую сторону, и равновесие установится. Предположим, что все океаны вымерзли, дожди прекратились,
содержание СО, в атмосфере возросло. При современной скорости выделения давление его в 1 бар создается за 20 млн. лет, такого количества углекислого газа хватит на поднятие средней температуры до +50 °С. Значит, льды растают и восстановится нормальный для жизни климат.
В круговороте углекислого газа большую роль играют живые организмы, определяющие изменения климата. Часть углекислого газа (около 20 %), не участвующая в карбонатно-силикатном обмене, выводится из атмосферы фотосинтезирующими растениями. При гниении растений и окислении в почве накапливается СО2, в результате его оказывается в почве больше, чем было 400 млн. лет назад до появления растений, поэтому превращение силикатных материалов в осадочные карбонатные породы происходит быстрее. Расчеты показывают, что исчезновение растений привело бы в повышению температуры на 10° за счет отрицательной обратной связи силикатно-карбонатного цикла.
Информация о работе Контрольная работа по Концепции Современного Естествознания