Контрольная работа по "Концепции современного естествознания"

Автор работы: Пользователь скрыл имя, 20 Июня 2015 в 09:18, контрольная работа

Описание работы

Естествознание — это ведущая отрасль науки, представляющая собой комплекс дисциплин, изучающих различные природные явления и процессы.
Предметом естествознания является природа, естество.
Естествознание — раздел науки, основанный на воспроизводимой эмпирической проверке гипотез и создание теорий (эмпирических обобщений), описывающих природные явления.

Содержание работы

Вопрос 2. Предмет естествознания и его отличие от других наук.....................3
Вопрос 52. Четырехмерное пространство-время Г. Минковского. Системность пространства времени.............................................................................5
Вопрос 79. Полевой механизм передачи взаимодействий.................................7
Вопрос 100. Термодинамика – наука о тепловых процессах в природе.........9
Вопрос 150. Наследственный аппарат и генная инженерия.............................17
Вопрос 179. Антропогенные воздействия на биосферу....................................20
Список используемой литературы.........................

Файлы: 1 файл

КСЕ, Контрольная работа, ВАГИНА А.В..docx

— 108.51 Кб (Скачать файл)

Первое начало термодинамики представляет собой по существу выражение закона сохранения энергии для систем, в которых существенную роль играют тепловые процессы. Энергетическая эквивалентность теплоты и работы, то есть возможность измерения их количеств в одних и тех же единицах и тем самым возможность их сравнения была доказана опытами Ю. Р. Майера (1842) и особенно Дж. Джоуля (1843). Первое начало термодинамики было сформулировано Майером, а затем в значительно более ясной форме Г. Гельмгольцем (1847). Приведённая выше формулировка первого начала равнозначна, очевидно, утверждению о невозможности вечного двигателя 1-го рода.

Из первого начала следует, что в случае незамкнутого процесса (когда система не возвращается в исходное состояние) разность DQ - DА º DU хотя и не равна, вообще говоря, нулю, но во всяком случае не зависит от пути перехода между данными состояниями. Действительно, произвольный процесс в обратном направлении образует с каждым из прямых процессов замкнутый цикл, для которого указанная разность обращается в нуль. Таким образом, DU представляет собой приращение величины U, имеющей в каждом состоянии вполне определённое значение, или, как говорят, являющейся функцией состояний системы. Эта величина называется внутренней энергией (или просто энергией) системы. Таким образом, из первого начала ТЕРМОДИНАМИКА вытекает, что существует характеристическая функция состояния системы - её энергия. Если речь идёт об однородном теле, которое способно совершать работу только при изменении объёма, то DА = pdV и бесконечно малое приращение (дифференциал) U равно dU = dQ - pdV, (1)

где dQ - бесконечно малое приращение теплоты, не являющееся, однако, дифференциалом какой-либо функции. При фиксированном объёме (dV = 0) вся сообщаемая телу теплота идёт на приращение внутренней энергии, и поэтому, в частности, теплоёмкость тела при постоянном объёме cv = (dU/dT) v. Вводя другую функцию состояний H = U + pV (энтальпию), дифференциал которой

dH = dU + Vdp, (2)

можно получить выражение для теплоёмкости, измеряемой при постоянном давлении: ср = (dH/dT) p. В случае идеального газа, который описывается уравнением состояний Клапейрона pV = nRT (n - число молей газа в объёме V, R - газовая постоянная), как свободная энергия, так и энтальпия определённой массы газа зависят только от Т, что подтверждается, например, отсутствием охлаждения в процессе Джоуля - Томсона. Поэтому для идеального газа cp - cv = nR.

Второе начало термодинамики. Запрещая вечный двигатель 1-го рода, первое начало термодинамики не исключает возможности создания такой машины непрерывного действия, которая была бы способна превращать в полезную работу практически всю подводимую к ней теплоту (так называемый вечный двигатель 2-го рода). Однако весь опыт по конструированию тепловых машин, имевшийся в начале 19 в., указывал на то, что кпд этих машин (отношение затраченной теплоты к полученной работе) всегда существенно меньше единицы: часть теплоты неизбежно рассеивается в окружающую среду. С. Карно первым показал (1824), что это обстоятельство имеет принципиальный характер, то есть любая тепловая машина должна содержать помимо нагревателя (источника теплоты) и рабочего тела, совершающего термодинамический цикл (например, пара), также и холодильник, имеющий температуру, обязательно более низкую, чем температура нагревателя. Второе начало термодинамики представляет собой обобщение вывода Карно на произвольные термодинамические процессы, протекающие в природе. Р. Клаузиус (1850) дал 2-му началу следующую формулировку: теплота не может самопроизвольно перейти от системы с меньшей температурой к системе с большей температурой. Независимо в несколько иной форме этот принцип высказал У. Томсон (Кельвин) в 1851: невозможно построить периодически действующую машину, вся деятельность которой сводилась бы к поднятию некоторого груза (совершению механической работы) и соответствующему охлаждению теплового резервуара. Несмотря на качественный характер этого утверждения, оно приводит к далеко идущим количественным следствиям.

Прежде всего оно позволяет определить максимальный кпд тепловой машины. Если машина работает на основе Карно цикла, то на протяжении изотермического контакта с нагревателем (Т = T1) рабочее тело получает количество теплоты D Q1, а на другом изотермическом участке цикла, находясь в контакте с холодильником (Т = Т2), отдаёт ему количество теплоты D Q2. Отношение DQ2/DQ1 должно быть одним и тем же у всех машин с обратимым циклом Карно, у которых одинаковы соответственно температуры нагревателей и холодильников, и не может зависеть от природы рабочего тела. Если бы это было не так, то машину с большей величиной указанного отношения можно было бы заставить работать в обратном направлении (поскольку циклы обратимы), приводя её в действие с помощью машины с меньшей величиной отношения. Эта комбинированная машина обладала бы тем свойством, что в ней теплота от холодильника передавалась бы нагревателю без совершения работы. Согласно 2-му началу термодинамики это невозможно, и поэтому отношение DQ2 /DQ1 у обеих машин должно быть одинаковым. В частности, оно должно быть тем же, что и в случае, когда рабочим телом является идеальный газ. Здесь это отношение легко может быть найдено, и, таким образом, оказывается, что для всех обратимых циклов Карно. В результате для всех машин с обратимым циклом Карно кпд максимален и равен h= (T1 - T2)/T1. В случае, если цикл необратим, то кпд оказывается меньше этой величины. Необходимо подчеркнуть, что пропорция Карно и кпд цикла Карно имеют указанный вид только в том случае, если температура измерена в абсолютной температурной шкале. Пропорция Карно положена в основу определения абсолютной температурной шкалы (см. Температурные шкалы). Если ввести величину S, изменение которой при изотермическом обратимом сообщении системе количества теплоты DQ есть DS = DQ/T, то полное приращение S в цикле Карно будет равно нулю; на адиабатических участках цикла DS = 0 (так как DQ = 0), а изменения на изотермических участках компенсируют друг друга. Полное приращение S оказывается равным нулю и при осуществлении произвольного обратимого цикла, что доказывается разбиением цикла на последовательность бесконечно тонких циклов Карно (с малыми изотермическими участками). Отсюда следует (как и в случае внутренней энергии), что энтропия S является функцией состояния системы, то есть изменение энтропии не зависит от пути перехода. Используя понятие энтропии, Клаузиус (1876) показал, что исходная формулировка 2-го начала термодинамики полностью эквивалентна следующей: существует функция состояния системы, её энтропия S, приращение которой при обратимом сообщении системе теплоты равно

dS = dQ/T; (4)

при реальных (необратимых) адиабатических процессах энтропия возрастает, достигая максимальное значения в состоянии равновесия.

Термодинамические потенциалы. Определение энтропии позволяет написать следующие выражения для дифференциалов внутренней энергии и энтальпии:

dU = TdS - pdV, dH = TdS + Vdp. (5)

Отсюда видно, что естественными независимыми параметрами состояния для функций U и Н являются соответственно пары S, V и S, р. Если же вместо энтропии в качестве независимого параметра используется температура, то для описания системы более удобны свободная энергия (Гельмгольцева энергия, или изохорно-изотермический потенциал) F = U - TS (для переменных Т и V) и термодинамический потенциал G = Н - TS для переменных Т и р (Гиббсова энергия, или изобарно-изотермический потенциал), дифференциалы которых равны

dF = - SdT - pdV, dG = -SdT + Vdp. (6)

Функции состояний U, Н, F и G называются потенциалами термодинамическими системы для соответствующих пар независимых переменных. Метод термодинамических потенциалов (Дж. Гиббс, 1874-1878), основанный на совместном применении 1-го и 2-го начал ТЕРМОДИНАМИКА, позволяет получить ряд важных термодинамических соотношений между различными физическими свойствами системы. Так, использование независимости вторых смешанных производных от порядка дифференцирования приводит к связи между теплоёмкостями ср и cv, коэффициентом теплового расширения  и изотермическим коэффициентом сжатия к соотношению между изотермическим и адиабатическим коэффициентами сжатия  ?и Термодинамика п. Из условия, что изолированная система в равновесном состоянии обладает максимальным значением энтропии, вытекает условие минимальности термодинамических потенциалов в равновесном состоянии по отношению к произвольным малым отклонениям от равновесия при фиксированных значениях соответствующих независимых переменных. Это приводит к важным неравенствам (условиям устойчивости), в частности  cp > cv > 0.

Третье начало термодинамики. Энтропия определяется согласно 2-му началу термодинамики дифференциальным соотношением, то есть определяется с точностью до постоянного слагаемого, которое хотя и не зависит от температуры, но могло бы быть различным для разных тел в состоянии равновесия. Соответствующие неопределённые слагаемые существуют и у термодинамических потенциалов. В. Нернст (1906) на основе своих электрохимических исследований пришёл к выводу, что эти слагаемые должны быть универсальными: они не зависят от давления, агрегатного состояния и других характеристик вещества. Этот новый, следующий из опыта принцип обычно называется третьим началом термодинамики или тепловой теоремой Нернста. М. Планк (1911) показал, что оно равносильно условию: энтропия всех тел в состоянии равновесия стремится к нулю по мере приближения к абсолютному нулю температуры, поскольку универсальную константу в энтропии можно положить равной нулю. Из 3-го начала термодинамики следует, в частности, что коэффициент теплового расширения, изохорный коэффициент давления  и удельные теплоёмкости cp и cv обращаются в нуль при T=0. Необходимо отметить, что 3-е начало термодинамики и вытекающие из него следствия не относятся к системам, находящимся в так называемом заторможенном состоянии. Примером такой системы является смесь веществ, между которыми возможны химические реакции, но они заторможены - скорость реакций при низких температурах очень мала. Другим примером может служить быстро замороженный раствор, который при низкой температуре должен был бы расслоиться на фазы, но процесс расслоения при низких температурах практически не происходит Термодинамика Такие состояния во многих отношениях подобны равновесным, однако их энтропия не обращается в нуль при Т = 0.

Применение термодинамики. Важными областями применения термодинамики являются теория равновесия химического и теория фазового равновесия, в частности равновесия между разными агрегатными состояниями и равновесия при расслоении на фазы смесей жидкостей и газов. В этих случаях в процессе установления равновесия существенную роль играет обмен частицами вещества между разными фазами, и при формулировке условий равновесия используется понятие химического потенциала. Постоянство химического потенциала заменяет условие постоянства давления, если жидкость или газ находятся во внешнем поле, например поле тяжести. Методы термодинамики эффективно применяются при изучении тех явлений природы, в которых существенную роль играют тепловые эффекты. В термодинамике принято выделять разделы, относящиеся к отдельным наукам и к технике (химическая термодинамика, техническая термодинамика и Термодинамика д.), а также к различным объектам исследования (термодинамика упругих тел, диэлектриков, магнетиков, сверхпроводников, плазмы, излучения, атмосферы, воды и др.).

 

Вопрос 150. Наследственный аппарат и генная инженерия

Накануне открытия Уотсона и Крика видные биологи считали, что вторгаться в наследственный аппарат, а тем более манипулировать с ним наука будет в состоянии лишь в XXI в. Так порой непредсказуемы в науке ее основополагающие открытия, дающие человечеству совершенно новые возможности и в познании, и в практике. Но здесь в дело вступила предельная четкость строения ДНК, ее некапризный характер, которые в соединении с неистощаемой выдумкой исследователей породили новый вид исследования: генную инженерию – искусство манипулирования этой удивительной молекулой.

Перед наукой открылась возможность не только изучать наследственный материал, но и влиять на саму наследственность: «оперировать» ДНК, сращивать участки генов далеких друг от друга животных или растений, иначе говоря, творить неизвестные природе химеры, подобные тем, которых с такой фантазией когда-то изображал на своих полотнах известный художник И. Босх.

Первым с помощью генной инженерии был получен инсулин, затем интерферон, потом гормон роста. Позже сумели изменить наследственность свиньи, чтобы она не наращивала столько жира, коровы – чтобы ее молоко не скисало так быстро. Благодаря вмешательству человека в конструкцию ДНК были улучшены или изменены качества десятков животных и растений.

Но неожиданно генной инженерии представилась возможность решать задачи, казалось бы, совсем далекие и от сельскохозяйственных полей, и от ферм, и от нужд человеческого здоровья.

Стареет ли наследственный аппарат? Мать, отец, ребенок – современники. Сохранится ли действенность генного анализа, когда речь зайдет об ушедших из жизни людях? Лабораторные исследования подтверждают силу анализа даже в том случае, если ДНК принадлежат весьма далеким друг от друга поколениям.

История недавно предоставила возможность проверить это. Необходимо было определить, кому принадлежат скелеты, найденные в захоронении под Екатеринбургом. Царской ли семье, расстрелянной в этом городе в 1918 г.? Или слепой случай собрал в одну могилу такое же число мужских и женских останков? Ведь в годы гражданской войны погибли многие миллионы.

Образцы останков были отправлены в Англию, в центр судебно-медицинской экспертизы, – там уже накоплен большой опыт генного анализа.

Из костной ткани исследователи выделили молекулы ДНК и провели анализ. С точностью 99% установлено: в исследуемой группе находятся останки отца, матери и их трех дочерей.

Но может быть, это не царская семья? Следовательно, надо было доказать родство найденных останков с членами английского королевского дома, с которым Романовы связаны довольно близкими родственными узами. В частности, муж ныне здравствующей королевы Англии принц Филипп – внучатый племянник русской императрицы Александры Федоровны (его мать доводилась племянницей последней русской царицы).

Анализ подтвердил родство погибших с английским королевским домом. Генеральный директор службы судебно-медицинской экспертизы британского Министерства внутренних дел госпожа Джанет Томпсон официально объявила: «Найденные под Екатеринбургом останки принадлежат царской семье Романовых».

Таким образом, генетическая инженерия - это совокупность методов молекулярной генетики, направленных на искусственное создание новых, не встречающихся в природе сочетаний генов. Те или иные чужеродные для данного организма гены вводят в его клетки и встраивают в его геном с различными целями: для изучения строения и функций генетического аппарата, для эффективной наработки продукта данного гена (напр, гормона или антибиотика) , для придания организму-хозяину каких-либо желаемых свойств (напр, для сельскохозяйственных растений и животных – большей продуктивности или большей устойчивости к инфекциям или паразитам) , для замещения (компенсации) генов, дефекты которых вызывают наследственные заболевания, и др. Генно-инженерная технология использует всё разнобразие сложных и тонких методов современной генетики, позволяющих работать с ничтожными количествами генетического материала. Основные этапы и операции генной инженерии включают: выделение из клеток ДНК, содержащей нужный ген; разрезание ДНК на мелкие фрагменты с помощью специальных ферментов; соединение фрагментов ДНК с т. н. векторами, обеспечивающими проникновение в клетку; клонирование (размножение) нужного гена; создание рекомбинантной (гибридной) ДНК из участков ДНК (генов) разного происхождения; введение (микроинъекция) генетического материала в культивируемые клетки организма-хозяина или в его яйцеклетку. После того как в нач. 70-х гг. 20 в. был разработан метод получения рекомбинантных ДНК, чужеродные гены стали вводить в клетки бактерий, растений и животных. Такие организмы получили название трансгенных. Очень быстро генная инженерия нашла практическое применение как основа биотехнологии. Уже в 80-е гг. 20 в. с помощью бактериальных клеток, в которые вводили гены человека, ответственные за синтез гормонов инсулина и соматотропина и антивирусного белка интерферона, было налажено производство этих важных для медицины препаратов. В мощную индустрию превратилось получение и разведение используемых в сельском хозяйстве трансгенных растений и трансгенных животных. Большинство учёных связывает с развитием генной инженерии решение таких сложных проблем, как обеспечение человечества продовольствием и энергией, успешную борьбу с болезнями и с загрязнением окружающей среды. Вместе с тем высказываются опасения, что ничем не ограниченные генетические эксперименты и широкое использование в пищу трансгенных организмов может привести к непредсказуемым последствиям и спорно с точки зрения традиционной морали и этики.

Информация о работе Контрольная работа по "Концепции современного естествознания"