Автор работы: Пользователь скрыл имя, 05 Ноября 2013 в 10:33, контрольная работа
У человека имеется две основные познавательные способности – чувства и разум. Посредством органов чувств мы вступаем в непосредственный контакт с окружающим миром и получаем чувственные образы окружающих нас вещей и явлений. Мы воспринимаем внешнюю форму окружающих предметов, их окраску, величину, слышим пенье птиц и журчанье ручьев, осязаем твердость и мягкость, тепло и холод. Разум устанавливает причинные связи событий, вскрывает внутреннее строение вещей, выявляется их существенные свойства. В соответствии с познавательными способностями человека в структуре научного знания выделяют два уровня – эмпирический и теоретический.
Министерство образования и науки Российской Федерации
Федеральное государственное
автономное образовательное учреждение
высшего профессионального
«Российский государственный профессионально-педагогический
университет»
Институт менеджмента и экономической безопасности
Кафедра экономической теории
Контрольная работа
По дисциплине «Концепции современного естествознания»
Екатеринбург
2013
1 Эмпирический уровень познания. Эмпирические методы познания (наблюдение, описание, измерение, эксперимент). Роль эксперимента в науке (примеры). В чем отличие эксперимента от наблюдения? Какие естественные науки основываются главным образом на наблюдении? Приведите примеры.
1.1 Эмпирический уровень и методы познания.
У человека имеется две основные познавательные способности – чувства и разум. Посредством органов чувств мы вступаем в непосредственный контакт с окружающим миром и получаем чувственные образы окружающих нас вещей и явлений. Мы воспринимаем внешнюю форму окружающих предметов, их окраску, величину, слышим пенье птиц и журчанье ручьев, осязаем твердость и мягкость, тепло и холод. Разум устанавливает причинные связи событий, вскрывает внутреннее строение вещей, выявляется их существенные свойства. В соответствии с познавательными способностями человека в структуре научного знания выделяют два уровня – эмпирический и теоретический.
Эмпирический уровень включает в себя знание фактов – каких-то конкретных положений дел, явлений, свойств. Магнит притягивает железные предметы; Волга впадает в Каспийское море; пингвины не летают; орбита Земли ближе к Солнцу, чем орбита Марса, - все это факты. Они устанавливаются с помощью эмпирических методов познания – наблюдения, измерения, эксперимента – и образуют фундамент любой научной дисциплины.
Наблюдением называется восприятие предметов и явлений действительности, осуществляемое с целью их познания.
В акте наблюдения можно выделить: 1) объект наблюдения; 2) субъект; 3) средства; 4) условия наблюдения; 5) систему знания, исходя, из которой задают цель наблюдения и интерпретируют его результаты. Все эти компоненты акта наблюдения следует учитывать при сообщении результатов наблюдения для того, чтобы его мог повторить любой другой наблюдатель. Важнейшим требованием к научному наблюдению является требование интерсубъективности: наблюдение должно быть осуществлено так, чтобы его мог повторить любой другой наблюдатель с одинаковым результатом. Лишь при соблюдении этого требования результат наблюдения будет включен в науку.
Наблюдение считают разновидностью научной практики. Это обусловлено тем, что наблюдение существенно предполагает материальную деятельность, связанную с самим актом чувственного восприятия, использования приборов и т.п. Его специфика по сравнению с другими видами практики состоит в том, что наблюдение не включает в себя непосредственного физического воздействия на объект (либо этим воздействием можно пренебречь). Но оно является необходимым элементом других эмпирических методов познания – измерения и эксперимента, которые включают в себя практические действия с предметами.
Измерение — совокупность
действий, выполняемых при помощи
определенных средств с целью
нахождения числового значения
измеряемой величины в
Эксперимент - активное и целенаправленное вмешательство в протекание изучаемого процесса, соответствующее изменение объекта или его воспроизведение в специально созданных и контролируемых условиях. Латинское слово "экспериментум" буквально означает пробу, опыт. Эксперимент и есть испытание изучаемых явлений в контролируемых и управляемых условиях. Экспериментатор стремится выделить изучаемое явление в чистом виде, с тем чтобы было как можно меньше препятствий в получении искомой информации. Постановке эксперимента предшествует соответствующая подготовительная работа. Разрабатывается программа эксперимента; если нужно, то изготавливаются специальные приборы, измерительная аппаратура; уточняется теория, которая выступает в качестве необходимого инструментария эксперимента.
Составляющими эксперимента являются: экспериментатор; изучаемое явление; приборы. В случае приборов речь идет не о технических устройствах типа компьютеров, микро- и телескопов, призванных усилить чувственные и рациональные возможности человека, а о приборах-детекторах, приборах-посредниках, фиксирующих данные эксперимента, испытывающих непосредственное влияние изучаемых явлений. Как видим, экспериментатор находится "во всеоружии", на его стороне кроме всего прочего профессиональный опыт и, что особенно важно, владение теорией. В современных условиях эксперимент чаще всего проводится группой исследователей, которые действуют согласованно, соизмеряя свои усилия и способности.
1.2 Роль эксперимента в науке, его отличие от наблюдения.
Эксперимент разрушает устоявшиеся мифы и открывает глаза на новые грани науки.
Эксперимент обладает захватывающим азартом, дает надежду на открытие неизведанного, придает дух первооткрывателя, стимулирует выброс эндорфинов в мозгу и создает мандраж в испытателе.
Пастер, испытавший вакцины на самом себе, Галилей, вступивший в конфликт с католической церковью, Архимед, погибший, от рук римлян ни на секунду не колебались, в своих исследованиях и экспериментах.
Эксперимент - это метод познания, с участием человека, как наблюдателя или составляющей этого процесса, для получения информации в целях исследования.
Эксперимент ставит последнюю точку. Он может подтвердить или опровергнуть теорию. Эксперимент также может породить новые идеи и теории. Такова роль эксперимента в науке.
Эту роль нельзя переоценить. Вот почему строят супердорогие адронные коллайдеры с бюджетом миллиарды долларов и временем постройки несколько лет, строят огромные научно-исследовательские лаборатории, требующие колоссальных затрат.
Различие между наблюдением и экспериментом зависит от природы вопроса. В наблюдении вопрос остается, так сказать, открытым. Исследователь не знает ответа или имеет о нем весьма смутное представление. Напротив, в эксперименте вопрос становится гипотезой, то есть предполагает существование какой-то зависимости между фактами, и эксперимент ставит своей целью проверить ее.
Но существуют также так называемые «эксперименты для разведки», когда экспериментатор не имеет ответа па свой вопрос и ставит перед собой цель наблюдать действия испытуемого в ответ на ситуации, созданные экспериментатором. В этом случае отличия, которые можно установить между наблюдением и экспериментом, являются лишь различием в степени между двумя этими процедурами. В наблюдении ситуации определяются менее строго, чем в эксперименте, но, как мы вскоре увидим, с этой точки зрения, существуют разные переходные ступени между естественным наблюдением и спровоцированным наблюдением.
Третье отличие, также в степени, между наблюдением и экспериментом зависит не от контроля ситуаций, а от точности, с которой можно регистрировать действия испытуемого. Наблюдение часто вынуждено довольствоваться менее строгой процедурой. чем эксперимент, и наши методологические соображения о наблюдении будут посвящены главным образом тому, как обеспечить точность наблюдения, не прибегая к стандартизованным ситуациям эксперимента, где число предвиденных ответов ограничено.
1.3 Естественные науки, основанные на наблюдении.
Критерий непротиворечивости научного знания обеспечивает последовательность мышления, достигаемый соблюдением известных законов классической, или аристотелевской, логики и, прежде всего, закона недопущения противоречия. Решающую роль критерий непротиворечивости играет в таких формальных и абстрактных науках, как математика и логика, где само существование их объектов основывается на этом критерии. Ведь формально противоречивый объект или доказательство не имеет права на существование в науке. Если определение понятия или доказательство теоремы окажется противоречивым, то оно признается неправильным и поэтому должно быть исключено из науки или, по крайней мере, требует исправления. Соблюдение критерия непротиворечивости обязательно не только для математики и логики, но и для любых наук, в том числе, опирающихся на эксперимент или конкретные факты. Такие науки часто называют эмпирическими, поскольку они развиваются и основываются на различных формах опыта, в том числе наблюдениях и экспериментах, результаты которых составляют эмпирический базис науки. К ним относится большая часть естественных и технических наук. В отличие от них экономические, социальные и гуманитарные науки опираются преимущественно на факты, устанавливаемые в ходе наблюдений социальной жизни и практики, и поэтому их часто называют фактуалъными науками. Поскольку те и другие науки опираются, в конечном счете, на опыт, факты и практику, и тем самым отличаются от абстрактных и формальных наук, то в дальнейшем для единства терминологии, мы будем называть их эмпирическими науками. Следует, однако, не забывать, что во всех этих науках познание не ограничивается только наблюдениями и опытом, а широкое использует теоретические методы исследования.
Из логики известно, что два противоречащих суждения не могут быть одновременно истинными, т.е. их конъюнкция дает ложное высказывание. Но по правилу импликации символической логики, лежащей в основе логического вывода, из ложного высказывания можно получить как истину, так и ложь. Поэтому допущение противоречия в рассуждении привело бы к разрушению порядка и последовательности в наших рассуждениях. Чтобы исключить такую возможность, в классической и символической логике вводится особый закон, запрещающий противоречия в рассуждениях (принцип непротиворечивости). С содержательной точки зрения допущение противоречия привело бы к бесплодности науки, ибо противоречивая система не дает никакой конкретной информации об изучаемом мире.
2 Электронная
структура атома и его
2.1 Электронная
структура атома, его химически
Атом — неделимый — микроскопическая электронейтральная частица вещества, наименьшая часть химического элемента, являющаяся носителем его свойств.
Атом состоит из атомного ядра и окружающего его электронного облака. Ядро атома состоит из положительно заряженных протонов и электрически нейтральных нейтронов, а окружающее его облако состоит из отрицательно заряженных электронов. Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. В противном случае он обладает некоторым положительным или отрицательным зарядом и называется ионом. Атомы классифицируются по количеству протонов и нейтронов в ядре: количество протонов определяет принадлежность атома некоторому химическому элементу, а число нейтронов — изотопу этого элемента.
Электронам в атоме приписываются различные орбитали, которые характеризуются главным квантовым числом и, орбитальным квантовым числом / и магнитным квантовым числом mi (см. Квантовые числа, Квантовая химия). Имеется одна наиболее устойчивая орбиталь с п = 1, образующая /С-оболочку. L-Оболочка с п = 2 включает одну орбиталь с l =0 и ml= 0 и три с l = 1 и тl = -1, 0 и + 1. Их называют ls-орбиталь, 2s-op-биталь и три 2р-орбитали. М-Оболочка состоит из Зs-орбитали, трёх Зр-орбиталей и пяти Зd-орбиталей. Электрон имеет спин со спиновым квантовым числом s = 1/2, который может ориентироваться относительно определённого направления двумя различными путями - с компонентами, даваемыми магнитным спиновым квантовым числом ms, равным + 1/3 или -1/2. В атоме не может быть двух электронов с одинаковыми значениями всех квантовых чисел. Следовательно, ls-орбиталь, образующая К-оболочку, может быть занята только одним электроном с положительным или отрицательным спином или же двумя электронами (электронной парой), одним - с положительным спином, другим - с отрицательным.
Заполнение определённых оболочек и под оболочек приводит к особой устойчивости атомов, наблюдающейся у атомов инертных газов. В этих устойчивых структурах электронная конфигурация заполненной оболочки гелия Is2, неона 2s2 2р6, аргона 3s2 Зр6, криптона 3d10 4s2 4р6, ксенона 4d10 5s2 5p6, радона 4fu 5d10 6s2 6pB, эка-радона 5fli 6dia 7s2 7p6. [О заполнении электронных оболочек см. также Атом, Периодическая система элементов.]
Информация о работе Контрольная работа по "Концепциям современного естествознания"