Космотологии

Автор работы: Пользователь скрыл имя, 19 Марта 2012 в 19:26, реферат

Описание работы

Целостное представление о Вселенной ставит космологию в особое положение по отношению к другим наукам. Действительно, если любая другая наука может исследовать свой предмет со всех сторон и в полном объёме, то космологии доступна только часть Вселенной, т. е. только часть своего предмета исследования (и то только изнутри, поскольку познающего субъекта невозможно отделить от предмета исследования).

Файлы: 1 файл

КОСМОТОЛОГИИ.doc

— 103.50 Кб (Скачать файл)

Неудачное применение ОТО к описанию Вселенной вызвало в научных кругах недоверие не только к созданной на её основе космологии, но и к самой теории. А недоверие всегда рождает альтернативные варианты.

Так, например, в 80-х годах группой физиков во главе с ректором Московского государственного университета Логуновым разработана релятивистская теория гравитации (РТГ), которая, по мнению самих авторов, должна заменить теорию Эйнштейна. Если ОТО - чисто геометрическая теория, описывающая движение материи на фоне ею же искривлённого пространства-времени, то РТГ представляет собой полевую теорию, наподобие электромагнетизма Максвелла, в которой полевые переменные рассматриваются на фоне плоского мира.

Правда другая группа московских физиков утверждала - и похоже на законных основаниях, - что ОТО также имеет полевую формулировку и что принцип получения полевых уравнений в ней такой же, как и в РТГ. Более того, эта группа была уверена, что сама РТГ является полевой формулировкой ОТО.

Полемика между указанными группами достигла в то время такого накала страстей, что их работы печатались рядом в одних и тех же номерах журналов, а обсуждение основных разногласий выплеснулось на страницы даже научно-популярных изданий .

Не вдаваясь в полемику между приверженцами и противниками той или иной теории, следует отметить их общую закономерность: в одном из своих вариантов каждая из них приводит к одному и тому же результату - обобщённому уравнению Клейна-Гордона, которое больше характерно для квантовой механики, чем для космологии.

К сожалению, этот случай малоизучен в рамках РТГ и практически не изучен в ОТО. Над авторами РТГ довлела концепция расширяющейся Вселенной, которую они «постарались» подтвердить. А если получен результат, в общих чертах совпадающий с общепринятой концепцией, то это успокаивает. Такова уж психология человека. Позиция же сторонников ОТО тем более была непоколебима, и они больше были заняты исследованием гравитационных волн, чем выдвижением новых гипотез в космологии.

Уравнение Клейна-Гордона (имеет нулевую правую часть в отличие от обобщённого уравнения Клейна-Гордона) впервые было предложено в 1926 г. независимо Клейном, Гордоном, Шрёдингером и Фоком как релятивистское волновое уравнение квантовой механики. Каким же образом подобное уравнение перекочевало и в космологию? И как всё это нужно понимать?

Наиболее понятные ответы на данные вопросы можно найти в рамках ОТО. Но, прежде чем искать ответы, следует отметить, что для однозначного решения уравнении ОТО необходимо найти ещё четыре уравнения (для полноты системы). И такие уравнения в космологии имеются!

Итак, что мы знаем о Вселенной достоверно? Астрономические наблюдения свидетельствуют, что в глобальных масштабах геометрия Вселенной евклидова (это следует также и из факта существования в физике десяти законов сохранения и из других предпосылок)), а распределение материи в ней однородно. Эти два обстоятельства и дают ключи к однозначному решению уравнений ОТО.

Во-первых, условие евклидовости Вселенной однозначно приводит к выводу о том, что из двух видов уравнений Эйнштейна правильными являются только те из них, которые содержат космологическую постоянную (хотя на самом деле она и не является постоянной величиной). Это же условие предполагает возможность полевой формулировки ОТО в виде разложения геометрии пространства-времени на плоский фон и отклонения относительно этого фона точно так же, как пульсирующий электрический ток можно представить в виде суммы постоянного и переменного токов.

Во-вторых, условие однородности четырёхмерного пространства-времени Вселенной по своему математическому смыслу эквивалентно добавлению четырёх недостающим для полноты ОТО уравнений. Таким образом, система уравнений становится замкнутой, а задача описания свойств Вселенной - разрешимой без дополнительных допущений.

Более того, она не только становится разрешимой, но и значительно упрощается, так как её сферическая симметрия позволяет перейти от десяти переменных к одной - характеризующей гравитационное поле любой материальной точки Вселенной как функцию расстояния. С учётом всего вышеизложенного и получается обобщённое уравнение Клейна-Гордона.

Вне сферически-симметричного материального тела обобщенное уравнение Клейна-Гордона преобразуется в обычное уравнение Клейна-Гордона, которое описывает распространение гравитационных волн в свободном пространстве, т. е. за пределами тела. Гравитационные волны, в свою очередь, могут возникать при резкой деформации тела, взрыве, коллапсе и т. п. Но, нас здесь интересуют не способы генерации гравитационных волн, а их закон распространения.

В статическом случае для того же тела уравнение Клейна-Гордона преобразуется в уравнение Юкавы, решением которого является, соответственно, потенциал Юкавы. Данное уравнение было предложено в 1935 г. японским физиком Юкавой для описания действия ядерных сил, а теперь оно естественным образом появилось и в космологии, но уже для описания действия сил тяготения.

Характерной особенностью уравнения Юкавы и упомянутого выше уравнения Клейна-Гордона является то, что они описывают короткодействующие физические процессы и содержат в качестве характеристики затухания процесса постоянную величину, которая применительно ко всей Вселенной названа радиусом гравитационных взаимодействий.

Скорость затухания этих процессов можно показать на примере сравнения потенциала Юкавы с потенциалом Ньютона, описывающем привычные для нас силы тяготения. Так, если на расстоянии одного радиуса гравитационных взаимодействий от материального тела потенциал Юкавы составляет 37 % от потенциала Ньютона, то на утроенном расстоянии - уже только 5 %, а на удесятерённом - всего лишь 0,005 %.

Радиус гравитационных взаимодействий прямо пропорционален скорости света и обратно пропорционален корню квадратному из плотности среды. Для реальной Вселенной с её исчезающе малой плотностью он равен примерно 20 млрд. световых лет. Поэтому на тех расстояниях, с которыми обычно имеет дело человек, заметить разницу между реальными силами тяготения и силами, вычисленными по формуле Ньютона, практически невозможно. Действительно, даже на расстоянии в 1000 км относительная разница между ними составляет всего 10-40. Разве эту разницу можно измерить экспериментально?

В совершенно же пустой Вселенной уравнение Клейна-Гордона переходит в привычное для нас волновое уравнение Даламбера, описывающее распространение гравитационных волн в свободном пространстве при отсутствии материи, а юкавовский закон тяготения преобразуется в известный закон тяготения Ньютона. Таким образом соблюдается принцип соответствия в физических теориях и показывается, что известные законы физики являются всего лишь приближениями более общих физических законов Вселенной.

До сих пор мы рассматривали в среднем неподвижное относительно всех масс Вселенной материальное тело. Если же тело разогнать до некоторой скорости, то его взаимодействие с окружающей средой изменится: ослабнет гравитационная связь с массами позади себя и усилится впереди по ходу движения.

При определении характера и величины этих изменений однозначно доказывается тождество инертной и гравитационной масс и показывается, что инертные свойства материальных тел обусловлены их гравитационным взаимодействием со всеми массами Вселенной в духе принципа Маха. Воистину именно в этом ощущается наибольшее соответствие между названием ОТО и её физическим содержанием!

Чрезвычайно интересен и сам механизм взаимодействия материального тела со Вселенной. Скорость света постоянна только в инерциальных системах отсчёта (системах координат, движущихся равномерно, прямолинейно и имеющих свой собственный масштаб пространства и времени). Именно в таких системах справедливы все основные законы физики в наиболее простом виде. И именно в своей собственной инерциальной системе отсчёта по этим законам осуществляется взаимодействие любого данного тела с другими материальными телами Вселенной.

Но, как оказалось, скорость света в системе отсчёта, движущейся относительно наблюдателя, измеренная по масштабам пространства и времени этого наблюдателя, подчиняется обыкновенному закону сложения скоростей так, что она может быть значительно больше или меньше 300 тыс.км/с. Указанное утверждение эквивалентно рассмотрению всех процессов Вселенной в одной единственной системе отсчёта, жёстко связанной с наблюдателем (что и исключает всякие недоразумения). Вот эта особенность в совокупности с выявленным ограничением радиуса гравитационных взаимодействий и обеспечивает уникальные закономерности взаимодействия материального тела со всеми массами Вселенной.

Так, при движении материального тела относительно Вселенной на него должна действовать тормозящая сила за счёт тех масс, от которых оно удаляется. Поскольку её величина оказалась пропорциональна скорости движения, а не квадрату скорости, как это бывает с лобовым сопротивлением в аэродинамике, то такое свойство Вселенной названо гравитационной вязкостью (по аналогии с вязкостью любой другой среды). Иными словами, Вселенная не является консервативной системой в прямом смысле этого слова. В ней постоянно происходит обмен между механической энергией отдельных её компонентов и гравитационным полем. Поэтому, отказавшись от модели расширяющейся Вселенной, мы не вернулись к статической Вселенной Ньютона, а создали новую, стационарную модель.

Торможение от действия гравитационной вязкости чрезвычайно мало. Оно пропорционально скорости движения тела, а коэффициент пропорциональности равен примерно 10-18. И что интересно - не зависит от массы тела. Но, невзирая на такую малую величину, гравитационная вязкость приводит к весьма интересным явлениям во Вселенной.

Например, силы сопротивления, обусловленные гравитационной вязкостью, становятся сравнимыми с силами притяжения средней галактики на расстоянии в 500 кпс от её центра. А это - половина среднего расстояния между галактиками. Значит, во Вселенной идёт постоянная борьба между локальными и глобальными взаимодействиями и граница этой борьбы сравнима со средним расстоянием между галактиками. Можно сказать, что именно гравитационная вязкость ответственна за среднемасштабную структуру Вселенной, связанную со скучиванием вещества в галактики.

Сюда следует добавить и тот факт, что поскольку реальные силы тяготения отличаются от ньютоновских, то становится несправедливым и свойство сферически-симметричной материальной оболочки не создавать во внутренней полости сил тяготения. Напротив, в реальной Вселенной всякое уплотнение материи в виде оболочки ведёт к дальнейшему наращиванию её плотности, в том числе и из внутренней полости. И именно в этом заключается секрет эффекта «мыльной пены» в крупномасштабной структуре Вселенной, связанной с образованием пустот и стенок этой "пены" из скоплений галактик.

Материальная среда Вселенной, взятая в глобальном масштабе, влияет не только на движение материальных тел, но и на распространение полей. Мы уже видели, как это влияние сказываются на гравитационном поле любого материального тела. И как гравитационные поля всех тел складываются и формируют структуру самой Вселенной. Они, как оказалось, влияют также и на распространение света, уменьшая его энергию с расстоянием. А это изменение, в свою очередь, сопровождается уменьшением его частоты. В линейном приближении эффект от действия такого закона легко спутать с эффектом Доплера, что и было сделано при объяснении красного смещения в спектрах излучения других галактик.

На основе стационарной модели Вселенной удалось найти взаимосвязь и между такими, казалось бы, не связанными между собой частями, как специальная теория относительности (СТО) и ОТО. Так, замедление течения времени в СТО при движении объекта с большой скоростью никак не связывалось с наличием других масс во Вселенной. В ОТО же подобное замедление существует только при нахождении вблизи массивного тела. В действительности оба эти эффекта идентичны друг другу по своей природе, так как на движущийся в однородной изотропной среде объект также действует гравитационный потенциал, зависящий от скорости движения. Одним словом, СТО является частным случаем ОТО для однородного изотропного пространства, заполненного материей. Пространство и время в СТО стали теперь так же, как и в ОТО, неотделимы от материи.

Есть и другое направление, где можно говорить об идентичности, и другие масштабы, на которых действуют подобные законы, - это микромир. Поэтому полученные автором результаты могут вести к определённому пересмотру всех наших представлений о свойствах мироздания: от макро к микромиру.

Действительно, открывшаяся аналогия между гравитацией и ядерным взаимодействием, между макро и микромиром, между Вселенной и атомом заставляет задуматься. Оказывается, гравитация и ядерные взаимодействия не только описываются одинаковыми уравнениями, но и энергия связи материального тела со всеми массами Вселенной, вычисленная с использованием реального закона тяготения, с точностью до знака равна внутренней (т. е. ядерной) энергии этого же тела .

Более того, имеются веские аргументы в пользу того, что гравитационное и ядерное взаимодействия - это вообще один вид физических взаимодействий, проявления которого мы наблюдаем либо в чудовищно разреженной (Вселенная), либо в чудовищно уплотнённой (атомное ядро) среде. Причём первое проявление мы наблюдаем изнутри, а второе - снаружи той среды, где это взаимодействие «работает».

Действительно, ядерные взаимодействия сильнее гравитационных примерно на 40 порядков. Причем это сравнение осуществляется по энергии взаимодействия mc2. Следовательно, исходя из эквивалентности взаимодействий, для скоростей света это соотношение уменьшается до 20 порядков, т. е. в атомном ядре скорость распространения взаимодействий по расчётам должна быть равна 10-12 м/с. Время «пересечения» протона или нейтрона на такой скорости будет составлять 0,001 с, что сравнимо со скоростями протекания ядерных реакций.

Если теперь воспользоваться формулой для определения радиуса гравитационных взаимодействий, то при указанной скорости получается величина 10 -15 м, которая в точности соответствует размеру нуклона.

На этой же основе совсем неожиданное объяснение получило и явление, известное в ядерной физике как «дефект масс». Оказывается, в соответствии с реальным (а не ньютоновским) законом тяготения материя с большой плотностью способна создавать экранирующий эффект и чем больше этой материи, тем большая её часть из внутренних областей перестаёт взаимодействовать с окружающим миром.

Информация о работе Космотологии