Автор работы: Пользователь скрыл имя, 27 Апреля 2015 в 16:42, реферат
В 20 веке астрономии произошли радикальные изменения. Начиная с 20-30-х гг. в качестве теоретической основы астрономического познания стали выступать релятивистская и квантовая механика. Эмпирический базис астрономии стал всеволновой (радио-, инфракрасный, оптический, ультрафиолетовый, рентгеновский и гамма- диапазоны). Общая теория относительности дала возможность модельного теоретического описания явлений космологического масштаба.
Введение…………………………………………………………………………..3
1.Галактики…………………………………………………………………..........4
1.1 Классификация галактик……………………………………………………..5
1.2 Спиральные рукава галактик………………………………………………....9
2. Местная группа галактик……………………………………………….…….11
2.1 Квазары……………………………………………………………………….11
2.2 Местная группа галактик………………………………………………........12
3. Млечный путь……………………………………………………………........13
4.Магнитные поля. Красное смещение………………………………………...16
4.1 Магнитные поля галактик…………………………………………………...16
4.2 Красное смещение. Закон Хаббла…………………………………………..18
Заключение………………………………………………………………….........20
Список литературы………………………………………………………………22
Введение………………………………………………………
1. Галактики………………………………………………………
1.1 Классификация галактик……………………
1.2 Спиральные рукава галактик…………
2. Местная группа галактик…………………
2.1 Квазары……………………………………………………………
2.2 Местная группа галактик…………………
3. Млечный путь………………………………………………
4. Магнитные поля. Красное смещение………………………………………...16
4.1 Магнитные поля галактик…………………
4.2 Красное смещение. Закон Хаббла…………………………………………..18
Заключение……………………………………………………
Список литературы……………………………………………………
Введение
В 20 веке астрономии произошли радикальные изменения. Начиная с 20-30-х гг. в качестве теоретической основы астрономического познания стали выступать релятивистская и квантовая механика. Эмпирический базис астрономии стал всеволновой (радио-, инфракрасный, оптический, ультрафиолетовый, рентгеновский и гамма- диапазоны). Общая теория относительности дала возможность модельного теоретического описания явлений космологического масштаба. Создание квантовой механики послужило импульсом развития астрофизики и космогонического аспекта астрономии выяснения источников энергии и механизмов эволюции звёзд, звёздных систем , обеспечило переориентацию задач астрономии с изучения механических движений космических тел под влиянием гравитационного поля на изучение их физических и химических характеристик. Выдвижение астрофизических проблем на первый план сопровождалось интенсивным развитием таких отраслей астрономической науки, как звёздная и внегалактическая астрономия. Появилась возможность непосредственного исследования с помощью космических аппаратов и наблюдений космонавтов околоземного космического пространства, Луны и планет Солнечной системы. Всё это привело к значительному расширению наблюдаемой области Вселенной и открытию целого ряда необычных явлений.
Мир галактик стал интенсивно изучаться с 1920 года. Когда шведский астроном К. Лундмарк разложил на звёзды периферийную часть спиральной туманности в созвездии Треугольника. Вскоре американский астроном Э. Хаббл, работавший на крупнейшем в то время телескопе с зеркалом диаметром 2,5 м., установил звёздную природу спиральных рукавов туманности Андромеды и нескольких более слабых галактик неправильной формы. Это положило начало развитию новой отрасли астрономической науки – внегалактической астрономии. В понимании астрономической картины мира важной целью является изучение мира галактик. С этой же целью написана данная работа, в которой рассмотрены классификации галактик и их строение , проанализированна местная группа галактик в том числе и млечный путь. Изучили такие понятия как магнитные поля и красное смещение и так же Закон Хаббла.
После изобретения телескопа внимание наблюдателей привлекли многочисленные светлые пятна туманного вида, видимые в разных созвездиях неизменно в одних и тех же местах. С помощью сильных телескопов В. Гершель и его сын Джон открыли множество таких туманных пятен, а к концу 19 века было обнаружено, что некоторые из них имеют спиральную форму. Но долго оставалось загадкой, что представляют собой эти туманности. Только в 20-е годы 20 века с помощью крупнейших в то время телескопов удалось разложить туманности на звёзды. Галактики – это гигантские звёздные системы (до 1013 звёзд). 6-ти метровый телескоп позволяет сфотографировать миллиарды галактик. Наблюдаемая нами область Вселенной – это такие галактики, какими они были в далёком прошлом. Например, свет от ближайшей к нам галактики Андромеды, которую в состоянии увидеть человек с хорошим зрением в виде размытого пятна в созвездии, - достигает Земли через 1,5 млн. лет. Расстояние до самых дальних из наблюдаемых в настоящее время галактик – свыше 10 млрд. световых лет (в 2000 г. обнаружен квазар на расстоянии 24 млрд. световых лет от Земли). Большинство галактик входит в группы, в скопления галактик и в сверхскопления. Наблюдаются и одиночные галактики. Есть галактики-карлики в несколько десятков световых лет и галактики-великаны с поперечником до 18 млн. световых лет.
Классификация галактик
Многообразны формы галактик. Большинство галактик относят к нескольким основным типам а мелкие различия галактик помогают подразделить эти типы на отдельные подтипы.
1. Эллиптические - круглая или эллиптическая форма наиболее простые галактики
2. Спиральные - имеют два или более спиральных рукава, образующих плоский диск, в центральной области - сфероидальное вздутие (балдж), в котором находится ядро галактики. Богаты яркими газовыми туманностями, окружающими горячие звёзды-сверхгиганты; облаками тёмной газово-пылевой материи.
3. Линзообразные, промежуточные галактики. Яркость от центра к краю падает ступеньками. Различают ядро, «линзу» и слабый «ореол». Иногда в наружных частях линзы видны зачатки спиральных рукавов, перемычки и наружное светлое кольцо
4. Неправильные - имеют неправильную форму и клочковатое строение; яркость и светимость невелики; изобилуют горячими сверхгигантами, газовыми туманностями (Магеллановы Облака), пылью, взаимодействующими галактиками; большинство из них – карлики.
По морфологическим свойствам галактики с нестационарными ядрами отличаются от нормальных галактик генерацией мощного рентгеновского, УФ-, ИК- и радиоизлучения, выбросами радиоизлучающей плазмы, ускорением газовых облаков и т. д.
Принято подразделять на четыре основных типа:
1. Сейфертовские галактики (К. Сейферт, 1943 г., США). В большинстве своём – спиральные галактики с яркими ядрами. Они образуют наиболее многочисленный класс нестационарных галактик. Характерным свойством является присутствие в их оптических спектрах широких эмиссионных линий (газ движется с большими скоростями). К 1983 г. обнаружено около 200 таких галактик. Это, как правило, спиральные галактики типов Sa и Sb. Они часто входят в состав шар и групп галактик, но избегают областей, занятых богатыми скоплениями. (Эти особенности присущи всем галактикам с УФ - избытком). Большинство из них развёрнуты к нам плашмя, есть несколько случаев ярких сейфертовских галактик, развернутых к нам ребром (по-видимому, ядра обладают анизотропией излучения). Ядра сейфертовских галактик – одни из самых мощных источников нетеплового излучения. Их радиоизлучение в тысячи раз слабее, чем излучение радиогалактик. Ядро Нашей Галактики проявляет признаки активности и не исключено, что его по основным параметрам можно отнести к ядрам слабых сейфертовских галактик.
2. Радиогалактики обладают
мощным электромагнитным
3. Лацертиды – немногочисленная группа галактик с активными ядрами, их основной признак – переменность блеска, относятся к внегалактическим объектам. Характеризуются оптической переменностью с большой амплитудой, переменным радиоизлучением и заметной поляризацией излучения. Она имеет вид звёздоподобных объектов, окружённых туманными оболочками, похожими на квазары. В их оптических спектрах нет эмиссионных линий, по которым можно было бы измерить красное смещение и тем самым расстояние до объекта. Спектр слабой туманной оболочки вокруг яркого ядра содержит линии поглощения (они типичны для звёздного компонента удалённой галактики), и тем самым соответствует спектрам обычных эллиптических галактик. В ядрах лацертидов отсутствует газовая оболочка. Излучение лацертидов – это излучение, идущее из самых внутренних частей центрального источника. Характерные временами переменные излучения позволяют оценить размер радиоизлучающей области лацертидов. Возможно, лацертиды – далеко проэволюционировавшие массивные ядра гигантских массивных эллиптических галактик.
4. Квазары – точечные источники излучения, как и лацертиды. У близких квазаров обнаружены слабые туманные оболочки, спектры которых позволяют считать квазары ядрами далёких галактик.
В центрах галактик обычно сосредоточено огромное количество вещества (до 10% всей массы). Здесь происходят выбросы большинства количества вещества, что приводит к интенсивному движению от центра туч водорода. В отдельных галактиках ядро может представлять собой чёрную дыру.
Современная астрофизика рассматривает чёрные дыры как реальные космические объекты, возникающие в результате гравитационного коллапса тяжёлых звёзд и часто присутствующие в центрах галактик.
Наиболее чётко они выделяются в спиральных галактиках. Ядро нашей Галактики имеет массу порядка несколько миллионов массы Солнца, оно окружено газовыми облаками, распространяющимися на расстояние до 150 пк от центра. Размер самого ядра меньше 10 пк, а его центральной части ~ 10-4пк. Некоторые галактики (Магеллановы Облака) вообще не имеют ядро. У некоторых галактик в ядрах обнаружены мощные области ионизированного газа и горячие звёзды («пекулярные ядра»). Для таких галактик характерны яркие эмиссионные линии в спектрах и мощное непрерывное УФ - излучение («галактики Маркаряна»). В отдельных случаях процессы, протекающие в ядрах, не могут быть объяснены свойствами только сконцентрированных в них звёзд и газа. Таковы галактики с активными (нестационарными) ядрами, составляющими по численности около 1% нормальных галактик (с неактивными ядрами). По морфологическим свойствам галактики с нестационарными ядрами существенно отличаются от нормальных галактик. Из ядер галактик происходит непрерывное истечение водорода. Водород является самым простым «кирпичиком», из которого в недрах звёзд образуются в процессе атомных реакций более сложные атомы. Наше Солнце, как обычная звезда, производит только гелий из водорода (который дают ядра галактик), очень массивные звёзды производят углерод – главный «кирпичик» живого вещества. Определение звёздной массы.
1. Наблюдение скоростей
вращения периферийных, промежуточных
и центральных частей
2. У эллиптических галактик
массу оценивают по расширению
линий в их спектрах, которое
вызывается движением звёзд: чем
больше скорости звёзд, тем больше
масса галактик и шире линии
в её спектре. По мощности излучения
галактики можно подразделить
на несколько классов
Вопрос об образовании и строении галактик изучает не только космология, но и космогония (различают планетную, звёздную, галактическую космогонию).
На ранней стадии развития Вселенная была заполнена разреженным газом, который распался потом на сгущения, а сгущения в последующем – на отдельные облака. Одни из облаков имели вращательный момент и центральное сгущение, из них впоследствии образовались спиральные галактики, а другие практически не вращались, они положили начало эллиптическим галактикам, облака же без значительного центрального сгущения, но всё же обладавшие вращательным моментом, дали начало неправильным галактикам. В массивных галактиках эволюция идёт быстрее. Галактики с большим вращательным моментом развились в тип Sc , со средним – в тип Sb, а с небольшим - в Sa. Чем массивнее спиральная галактика, тем сильнее тяготение сжимает спиральные рукава, поэтому у массивных галактик рукава тонкие, в них больше звёзд и меньше газа. Весь газ в эллиптических системах с самого начала превратился в звёзды сферической подсистемы.
Сравнивая количество звёзд разных поколений у большинства однотипных галактик можно установить возможные пути их эволюции. У более старых галактик наблюдается истощение запасов межзвёздного газа и снижение в связи с этим темпов образования звёзд новых поколений. Зато в них много белых карликов, представляющих собой одну из последних стадий эволюции звёзд. В этом и заключается старение галактик. Следует отметить, что в начале эволюции галактики имели более высокую светимость, так как в них было больше массивных молодых звёзд.
Спиральные ветви имеют сложный рисунок, динамичную форму и многообразие структур при единстве главных черт. Излучение от спиральных ветвей составляет большую часть излучения всей спиральной галактики и определяет общий вид звёздной системы. Для выяснения сущности явления спиральных ветвей необходимо определить механизм их образования. Крупномасштабная спиральная структура Нашей Галактики чётко выявляется по далёким пульсарам, спиральные ветви, определяемые по пространственному положению пульсаров, хорошо соответствуют ветвям, найденным по положению зон Н 11. По-видимому, в ветвях находятся в основном наиболее яркие и потому наиболее молодые (в среднем) пульсары. В то же время близкие к Солнцу пульсары, среди которых большинство имеет низкую радиосветимость, не обнаруживают связи со спиральными рукавами. Ветви содержат малую часть всех звёзд галактики, но в них сосредоточены почти все горячие звёзды высокой светимости. Звёзды этого типа относятся к молодым, поэтому спиральные ветви можно считать местом образования звёзд. Кроме молодых звёзд в рукавах сосредоточена большая часть межзвездного газа галактики, из которого и образуются звёзды. По характеру спиральных ветвей спиральные галактики делятся на классы. У одних ветви тонки и туго навиты, а других – они более размыты и круто удаляются от центральной области. Одна из распространённых классификаций спиральных галактик принадлежит французскому астроному Ж. Вокулёру. Газ в спиральных ветвях состоит в основном из водорода и часто образует плотные диффузные туманности, служащие ориентиром при определении вида спиральных ветвей. Ещё одним признаком ветвей является рассеянная в газе межзвёздная пыль, обнаруживаемая по производимому ею поглощению. Она видна как тонкая тёмная полоса по внутреннему (ближе к центру галактики) краю спиральной ветви. Кроме того, в рукавах наблюдаются тонкие полоски, пересекающие рукава и отдельные тёмные массы. Концентрация звёзд, образующих галактический диск, тоже увеличивается в ветвях. Звёзды, газ и др. объекты галактического диска движутся по орбитам, близким к круговым. Спиральные ветви могут быть волнами плотности. Волны распространяются по звёздному населению. А газ реагирует на возмущение гравитационного потенциала, связанного с волнами, бегущими по системе звёзд, его движение в гравитационном поле рукавов является несамосогласованным. При протекании межзвёздного газа через спиральные рукава в нём могут происходить своего рода фазовые переходы с образованием облачной структуры. Возможно, Солнце в Галактике находится в исключительном положении. Поскольку галактический диск вращается дифференциально, а спиральные рукава – твёрдотельно, в Нашей Галактике должна существовать окружность, на которой угловые скорости диска и волны плотности равны. В первой главе я рассмотрел понятие галактик их виды и спиральные рукава галактик.