О вкладе Менделеева в науку

Автор работы: Пользователь скрыл имя, 10 Мая 2013 в 17:28, реферат

Описание работы

Сколько плодотворных идей и конкретных дел осуществил ученый в своей стране! Он был одним из создателей Русского химического общества, принимал участие в работе Русского технического и Вольного экономического обществ.

Содержание работы

Введение
Глава 1
§1. Биографические сведения
§2. Ранний период научной деятельности
Глава 2
§1. Вклад Д.И. Менделеева в научную картину мира:
§1.2. Исследования газов
§1.3. Работы в области воздухоплавания
§1.4. Исследования в области кораблестроения
§1.5. Работы в области промышленности
§1.6. Исследования в области метрологии
§2. Вклад Д.И.Менделеева в области химии:
§2.3. Периодическая система химических элементов
§2.4. История создания периодической системы
Заключение
Список литературы

Файлы: 1 файл

РЕФЕРАТ.doc

— 1.31 Мб (Скачать файл)

С работами в области  воздухоплавания и сопротивления среды связаны и работы Д.И. Менделеева в области кораблестроения и арктического мореплавания. Монография Д. И. Менделеева «О сопротивлении жидкости и о воздухоплавании» (1880 г.) имела большое значение и для кораблестроения. Д.И. Менделеев внес крупнейший вклад в исследования сопротивления воды движению тел, изучил первые фундаментальные работы по этому вопросу и пришел к убеждению, что знания в этой области должны быть основаны на опытных данных. В начале 1880-х гг. в Петербурге был проведен ряд испытаний гребных винтов с целью разработки наилучшей формы корпуса судна. На основе отзыва Д.И. Менделеева на отчет об испытаниях было принято решение о постройке в Санкт-Петербурге первого отечественного опытового бассейна (пятого в мире), который сыграл значительную роль в создании российского флота.

Д.И. Менделееву была поручена экспертиза проекта адмирала С.О. Макарова о строительстве ледокола для  изучения высоких широт и достижения Северного полюса. Ученый дал на проект положительный отзыв. При участии С.О. Макарова и Д.И. Менделеева в течение 13 месяцев в Англии был построен первый в мире линейный ледокол мощностью 10 тыс. лошадиных сил, который получил имя «Ермак».

В 1901 — 1902 гг. Д.И. Менделеев  самостоятельно разработал проект высокоширотного экспедиционного ледокола. Им был намечен высокоширотный «промышленный» морской путь, проходящий вблизи Северного полюса. В ознаменование большого вклада Д.И. Менделеева в развитие судостроения и освоения Арктики его именем названы подводный хребет в Северном Ледовитом океане и современное научно-исследовательское океанографическое судно.

 

Ледокол конструкции Д.И. Менделеева. Модель выполнена по чертежам, сохранившимся в архиве ученого.


 

§1.5. Работы в области  промышленности

Десятки значительных трудов Д.И. Менделеева посвящены изучению новых путей развития промышленности России.

В 1861 году Менделеев по поручению  издательства «Общественная польза»  занимался переводом фундаментальной технологической энциклопедии Вагнера. В процессе этой работы ученый подробно познакомился с технологией переработки различных сельскохозяйственных продуктов, в частности с сахарным производством. И уже в ближайшем выпуске энциклопедии появилась его статья по оптической сахарометрии.

Особый интерес он проявил к  производству спирта. В 1863 году Менделеев  занимался конструированием приборов для определения концентрации спирта спиртомеров. А в течение 1864 года выполнил большое и тщательно подготовленное исследование удельных весов спирто-водных растворов во всем интервале концентраций при нескольких температурах. Эта экспериментальная работа стала основой докторской диссертации Менделеева «О соединении спирта с водой». Он вывел уравнение, связывающее плотность спирто-водных растворов с концентрацией и температурой, и нашел состав, отвечающий наибольшему сжатию и остающийся постоянным при изменении температуры. Он доказал, что идеальным содержанием спирта в водке должно быть признано 40°, которые не получаются никогда точно при смешении воды и спирта объемами, а могут получиться только при смешении точных весовых соотношений алкоголя и воды. Этот менделеевский состав водки и был запатентован в 1894 году правительством России, как русская национальная водка — «Московская особая» (первоначально «Московская особенная»).

Тесно связаны с вопросами технологии перегонки и первые работы Менделеева по переработке нефти. В 1863 году он посетил  нефтеперегонные предприятия в  Сураханах вблизи Баку, где в те годы применялась технология, сходная с перегонкой древесины, дал ряд важных рекомендаций, касающихся условий транспортировки нефти и конструкции тары. Результатом нескольких поездок на юг России с целью изучения нефтяных месторождений явилось предложение Д. И. Менделеева о расширении районов промышленного освоения (район Кубани, Закаспийский край и др.).

Весной и летом 1880 г. Д. И. Менделеев  работал на Константиновском нефтеперегонном  заводе близ Ярославля. Здесь он не только реализовал ряд своих технических усовершенствований, но и провел новые исследования нефти. Так, Д.И. Менделеев установил оптимальный режим перегонки нефти с получением керосина, смазочных масел и других продуктов. Там же, под наблюдением Менделеева был изготовлен специальный аппарат, с помощью которого ученый проводил испытания по непрерывной перегонке нефти.

Много внимания уделял Д.И. Менделеев  экономике нефтяной промышленности. В частности, он занимался проблемой  размещения заводов по переработке  нефти, вопросами сбыта сырья, цен на нефть и нефтепродукты. Ему принадлежат идеи перевозки нефти в нефтеналивных судах и строительства нефтепроводов. Он рассматривал нефть не только как топливо, но и как сырье для химической промышленности.

Д.И. Менделеев занимался и вопросами  экономики каменноугольной промышленности. В 1888 г. Д. И. Менделеев совершил две поездки в Донецкий район с целью выяснения причин кризиса в Донецкой каменноугольной промышленности. Результаты этих поездок он изложил в докладе правительству, сообщил на заседании Русского физико-химического общества и осветил в большой публицистической статье «Будущая сила, покоящаяся на берегах Донца». Д. И. Менделеев глубоко изучил технологию добычи и переработки угля. В 1888 г. он высказал идею о подземной газификации углей и перегонке газа по трубам в крупные города, считая этот процесс самым эффективным с точки зрения экономии топлива и облегчения труда горняков. Позже, в 1899 г., во время экспедиции на Урал, Д.И. Менделеев более подробно разработал свою идею, которая явилась прообразом идеи переработки полезных ископаемых под землей.

Обширные познания в химии и  опыт практического использования  достижений этой науки пригодились  ученому при разработке технологии нового типа бездымного пороха. В чрезвычайно  короткий срок (1,5 года) ему удалось создать удачный технологический процесс нитрования клетчатки, дающий возможность получить однородный продукт пироколлодий, выделяющий при взрыве минимальное количество твердых веществ, и на его основе — бездымный порох, превосходящий по характеристикам иностранные образцы. При выборе состава нитрующей смеси Д.И. Менделеев опирался на свою теорию растворов. «Менделеевский» порох давал «замечательно однообразные» начальные скорости снарядов и был безопасен для орудий. Однако изобретенный порох так и не был принят на вооружение в русском флоте. Вскоре подобный порох стали производить в Америке. Во время Первой мировой войны России пришлось закупать в США, в сущности, разработанный Менделеевым порох.

Труды Д.И. Менделеева, посвященные  изучению новых путей развития промышленности.


 

§1.6. Исследования в области  метрологии

Д.И. Менделееву принадлежит фундаментальный труд в области метрологии «Опытное исследование колебания весов» (1898 г.). В процессе исследования явления колебания Д. И. Менделеевым был сконструирован ряд уникальных приборов: дифференциальный маятник для определения твердости веществ, маятник — маховое колесо для изучения трения в подшипниках, маятник-метроном, маятник-весы и др.

В изучении колебаний Д. И. Менделеев  видел прямую возможность расширить  наши знания о природе силы тяжести. Одно из зданий Палаты было построено  с башней высотой 22 м и колодцем глубиной 17 м, где устанавливался маятник, служивший для определения величины ускорения силы тяжести.

Маятник-диск и маятник-подкова, сконструированные  Д.И. Менделеевым.


Результаты научных  и технических исследований сотрудников  Палаты освещались в организованном Д.И. Менделеевым в 1894 г. периодическом  издании «Временник Главной палаты мер и весов».

За период работы в Палате Менделеев  создал школу русских метрологов. Он может по праву считаться отцом  русской метрологии.

Эталонные гири


Организованная им Главная  палата мер и весов ныне является центральным метрологическим учреждением  Советского Союза и носит название Всесоюзного научно-исследовательского института метрологии имени Д. И. Менделеева.

§2. Вклад Д.И.Менделеева в области химии:

§2.3. Периодическая система химических элементов

Исследуя изменение  химических свойств элементов в  зависимости от величины их относительной  атомной массы (атомного веса), Д. И. Менделеев в 1869 г. открыл закон периодичности этих свойств: «Свойства элементов, а потому и свойства образуемых ими простых и сложных тел стоят в периодической зависимости от атомных весов элементов». Физическая основа периодического закона была установлена в 1922 г. Н. Бором. Поскольку химические свойства обусловлены строением электронных оболочек атома, периодическая система Менделеева – это естественная классификация элементов по электронным структурам их атомов. Простейшая основа такой классификации – число электронов в нейтральном атоме, которое равно заряду ядра (см приложение1). Но при образовании химической связи электроны могут перераспределяться между атомами, а заряд ядра остается неизменным, поэтому современная формулировка периодического закона гласит: «Свойства элементов находятся в периодической зависимости от зарядов ядер их атомов». Это обстоятельство отражено в периодической системе в виде горизонтальных и вертикальных рядов – периодов и групп. (см приложение.2).  

 Период – горизонтальный ряд, имеющий одинаковое число электронных слоев, номер периода совпадает со значением главного квантового числа n внешнего уровня (слоя); таких периодов в периодической системе семь. Второй и последующие периоды начинаются щелочным элементом (ns1) и заканчивается благородным газом (ns2np6).По вертикали периодическая система подразделяется на восемь групп, которые делятся на главные – А, состоящие из s- и p-элементов, и побочные – B-подгруппы, содержащие d-элементы. Подгруппа III B, кроме d-элементов, содержит по 14 4f- и 5f-элементов (4f- и 5f-семейства). Главные подгруппы содержат на внешнем электронном слое одинаковое число электронов, которое равно номеру группы. В главных подгруппах валентные электроны (электроны, способные образовывать химические связи) расположены на s- и p-орбиталях внешнего энергетического уровня, в побочных – на s-орбиталях внешнего и d-орбиталях предвнешнего слоя. Для f-элементов валентными являются (n – 2)f- (n – 1)d- и ns-электроны.  Сходство элементов внутри каждой группы – наиболее важная закономерность в периодической системе. Следует, кроме того, отметить такую закономерность, как диагональное сходство у пар элементов Li и Mg, Be и Al, B и Si и др. Эта закономерность обусловлена тенденцией смены свойств по вертикали (в группах) и их изменением по горизонтали (в периодах). Все сказанное выше подтверждает, что структура электронной оболочки атомов элемента изменяется периодически с ростом порядкового номера элемента. С другой стороны, свойства определяются строением электронной оболочки и, следовательно, находятся в периодической зависимости от заряда ядра атома. Далее рассматриваются некоторые периодические свойства элементов. (см. приложение 3)

Первый период (n = 1, l = 0) состоит из двух элементов H (1s1) и He (1s2).

Во втором периоде (n = 2, l = 0, 1) заполняются s- и p-орбитали от Li до Ne. Элементы называются соответственно s- и p-элементами.

В третьем периоде появляются пять d-орбиталей (n = 3, l = 0, 1, 2). Пока они вакантны, и третий период, как и второй, содержит восемь p-элементов элементов от Na до Ar.

Следующие за аргоном калий и кальций имеют на внешнем уровне 4s-электроны (четвертый период). Появление 4s-электронов при наличии свободных 3d-орбиталей обусловлено экранированием ядра плотным 3s23p6-электронным слоем. В связи с отталкиванием от этого слоя внешних электронов для калия и кальция реализуются [Ar]4s1- и [Ar]4s2-состояния. Сходство K и Ca с Na и Mg соответственно, кроме чисто «химического» обоснования, подтверждается также электронными спектрами. При дальнейшем увеличении заряда у следующего за кальцием скандия 3d-состояние становится энергетически более выгодным, чем 4p, поэтому и заселяется 3d-орбиталь (см. приложение 3). Из анализа зависимости энергии электрона от порядкового номера элемента В. М. Клечковский сформулировал правило, согласно которому энергия атомных орбиталей возрастает по мере увеличения суммы (n + l). При равенстве сумм сначала заполняется уровень с меньшим n и большим l, а потом с большим n и меньшим l. Так у K и Ca заполняется 4s-орбиталь (4 + 0 = 4), а потом у Sc заполняется 3d-орбиталь (3 + 2 = 5).

Приведенные рассуждения  подтверждаются экспериментальными данными  об изменении энергии s-, p-, d- и f-орбиталей в зависимости от порядкового номера элемента. Как следует из рис. 1.3, значения энергии различных состояний зависит от заряда ядра Z, и чем больше Z, тем меньше различаются эти состояния по энергиям. Характер этого различия таков, что кривые, выражающие изменение энергии, пересекаются. Так для элементов K и Ca (Z = 19 и 20) энергия 3d-орбиталей выше, чем 4p, а для элементов с Z ≥ 21 энергия 3d-орбиталей ниже, чем 4p. Начиная со скандия (Z = 21) заполняется 3d-орбиталь, а во внешнем слое остаются 4s-электроны. Поэтому в четвертом периоде в ряду от Sc до Zn все десять 3d-элементов – металлы с низшей степенью окисления, как правило, 2, за счет внешних 4s-электронов. Общая электронная формула этих элементов – 3d1–104s1–2. Для хрома и меди наблюдается проскок (или провал) электрона на d-уровень: Cr – 3d54s1, Cu – 3d104s1. Такой проскок с ns- на (n – 1)d-уровень наблюдается также у Mo, Ag, Au, Pt и у других элементов и объясняется близостью энергий ns- и (n – 1)d-уровней и стабильностью наполовину и полностью заполненных уровней.

Образование катионов d-элементов связано с потерей, прежде всего внесших ns- и только затем (n – 1)d-электронов. (см приложение 4)

Дальше в четвертом  периоде после десяти d-элементов  появляются p-элементы от Ga (4s24p1) до Kr (4s24p6).

Пятый период повторяет четвертый – в нем также 18 элементов, и 4d-элементы, как и 3d образуют вставную декаду (4d 1–105s 0–2).

В шестом периоде после лантана (5d16s2) – аналога скандия и иттрия следуют 14 4f-элементов – лантаноидов. Свойства этих элементов очень близки, поскольку идет заполнение глубоколежащего (n – 2)f-подуровня.                                                Общая формула лантаноидов 4f 2–145d 0–16s 2. (см. приложение 5)

После 4f-элементов заполняются 5d- и 6p-орбитали.

Седьмой период отчасти повторяет шестой. 5f-элементы называются актиноидами. Их общая формула 5f 2–146d 0–17s2. Далее следуют еще 6 искусственно полученных 6d-элементов незавершенного седьмого периода.

                       Периодическая система элементов.

 

 

 

§2.4. История создания периодической системы

Зимой 1867-68 года Менделеев начал писать учебник "Основы химии" и сразу столкнулся с трудностями систематизации фактического материала. К середине февраля 1869 года, обдумывая структуру учебника, он постепенно пришел к выводу, что свойства простых веществ (а это есть форма существования химических элементов в свободном состоянии) и атомные массы элементов связывает некая закономерность.

Менделеев многого не знал о попытках его предшественников расположить химические элементы по возрастанию их атомных масс и  о возникающих при этом казусах. Например, он не имел почти никакой  информации о работах Шанкуртуа, Ньюлендса и Мейера.

Информация о работе О вкладе Менделеева в науку