Основные концепции происхождения жизни

Автор работы: Пользователь скрыл имя, 16 Февраля 2013 в 18:24, контрольная работа

Описание работы

В своей работе я постараюсь выделить основные концепции происхождения жизни и раскрыть их, в пределах своего понимания, по изученному материалу.

Содержание работы

Введение
Определение жизни
Основные концепции происхождения жизни
Аргументы концепции происхождения жизни
3.1 креационистской концепции;
3.2 эволюционистской концепции;
3.3 теории саморождения (самоорганизации);
3.4 концепции панспермии.
Заключение
Список используемой литературы

Файлы: 1 файл

КСЕ1.doc

— 100.50 Кб (Скачать файл)

Суть эволюционного учения Ламарка  отражают два закона, сформулированные им.

Первый закон утверждает, что  постоянное употребление органа ведет  к его усилению, а неупотребление – к ослаблению и исчезновению.

Второй закон гласит, что под действием постоянных упражнений или не упражнений органы изменяются и возникшие изменения наследуются.

Положение об эволюции органического  мира Ламарк распространил и на объяснение происхождения человека от высших «четвероруких  обезьян».

Большой вклад в развитие эволюционных представлений так же внес Эр. Дарвин. Накопленный длительным развитием  биологической науки фактический  и теоретический материал требовал своего объяснения в рамках общей  концепции, диалектически отражающей противоречивые процессы развития в живой природе. Такое объяснение было дано Ч. Дарвином, который вскрыл и объяснил источники и движущие силы этой эволюции. В основу теории эволюции им были положены следующие материальные факторы: наследственность, изменчивость и естественный отбор. Его учение о естественном отборе стало ключевым в решении многих проблем эволюции органического мира. В 1859 г. был выпущен главный труд всей жизни Ч. Дарвина – «Происхождение видов путем естественного отбора, или Сохранение благоприятствуемых пород в борьбе за жизнь».

 

       3.3 теории самозарождения (самоорганизации);

 

Научному мировоззрению  по крайней мере с XIX века была присуща  идея развития. Но после открытия Кельвином и Клаузиусом второго начала термодинамики господствовало достаточно пессимистическое представление, что базовым состоянием материи является состояние термодинамического равновесия (хаоса) - самого простого из всех возможных состоянии системы, не обменивающейся энергией и веществом с окружающей средой. Господствующей тенденцией материи считалось стремление к разрушению спонтанно возникшей упорядоченности (в результате случайной маловероятной флуктуации) и возвращению к исходному хаосу. Следовательно, упорядоченное состояние вещества, которое наблюдается в доступной части Вселенной, возникло случайно, жизнь, как самая высокая из всех известных науке форм упорядоченности, тем более случайна и противоестественна. Так возникла модель стационарной Вселенной.

Что же заставило изменить этот, казалось бы, незыблемый взгляд на развитие, прийти к идее самоорганизации материи, которая внедрилась в научное мировоззрение во второй половине нашего века и коренным образом изменила старые взгляды на процессы развития? Эта идея появилась в связи с заменой модели стационарной Вселенной моделью развивающейся Вселенной и связанной с ней новой естественнонаучной концепцией развития мира.

Прежние представления  о развитии сформировались под влиянием двух классических физических дисциплин – статистической механики и равновесной термодинамики. Обе научные дисциплины описывают поведение изолированных макросистем, не обменивающихся ни энергией, ни веществом с окружающей средой. Вселенная, как самая крупная из всех известных систем, также считалась замкнутой. Но сегодня наука считает все известные системы от самых малых до самых больших открытых, обменивающимися энергией и (или) веществом с окружающей средой и находящимися, как правило, в состоянии, далеком от термодинамического равновесия. А развитие таких систем, как стало известно, протекает путем образования нарастающей упорядоченности. На такой основе возникло представление о самоорганизации вещественных систем.

В широком плане понятие  самоорганизации отражает фундаментальный  принцип природы, лежащий в основе наблюдаемого развития от менее сложных к более сложным и упорядоченным формам организации вещества. Но у этого понятия есть и более узкое значение, непосредственно характеризующее способ реализации перехода от простого к более сложному. В таком значении самоорганизацией называют природные скачкообразные процессы, переводящие открытую неравновесную систему, достигшую в своем развитии критического состояния  в новое устойчивое состояние с более высоким уровнем сложности и упорядоченности по сравнению с исходным. Критическое состояние – это состояние крайней неустойчивости, достигаемое открытой неравновесной системой в ходе предшествующего периода плавного, эволюционного развития.

Прежде чем привести примеры самоорганизации, необходимо уточнить, что же считать усложнением элементов и систем, их переходом от более простых к более сложным формам.

Понятия «простой» и  «сложный» всегда относительны, их смысл выявляется только при сопоставлении  свойств родственных объектов. Так, протон сложен относительно кварков, но прост относительно атома водорода; атом сложен относительно протона и электрона, но прост относительно молекулы и т.д. При этом мы видим, что сложные объекты обладают новыми качествами, которых лишены исходные простые элементы, составляющие их. Таким образом. Природу можно представить как цепочку нарастающих по сложности элементов.

Процессы объединения  «простых» элементов с образованием «сложных» систем протекают лишь при выполнении определенных условий. Например, если температура (энергия) окружающей среды превышает энергию связи двух частиц, то они не смогут удерживаться вместе. При снижении температуры до значений, при которых энергия среды и энергия связи частиц окажутся равными, наступает критический момент, и дальнейшее снижение температуры делает возможным процесс фиксирования частиц (например, протона и электрона) в атоме водорода.

Намного сложнее обстоит  дело при соединении атомов в молекулы. Здесь также существуют пороговые  значения параметров (температуры, плотности), называемые критическими значениями, которые отделяют область возможного образования от области, где этот процесс невозможен.

Затем идут новые уровни сложности и упорядоченности  вещества. Наиболее высокий уровень  упорядоченности, известный науке, демонстрирует феномен жизни и порождаемый им разум. Долгое время считалось, что феномен жизни противоречит господствовавшим физическим представлениям о стремлении материи к хаосу. Жизнь представлялась упорядоченным и закономерным поведением материи, основанным не только на тенденции переходить от упорядоченности к неупорядоченности, но частично и на существовании упорядоченности, которая поддерживается все время. Эта проблема впервые была четко сформулирована в книге известного физика-теоретика Э. Шредингера «Что такое жизнь?». Анализ, проделанный им, показывал, что феномен жизни разрушает постулат о единственной тенденции развития вещества – от случайно возникшей упорядоченности к неупорядоченности, рождённый классической термодинамикой. Живые системы оказались способны поддерживать упорядоченность вопреки «естественной» тенденции.

После выхода книги Шредингера создалась любопытная ситуация: за живым веществом признавалась способность  проявлять как тенденцию к  разрушению упорядоченности, так и  тенденцию к её сохранению. А за неживой природой по-прежнему признавалась только одна тенденция – неизбежно разрушать любую упорядоченность, возникшую в результате случайных отклонений от равновесия. И лишь сравнительно недавно стало ясно, что тенденция к созиданию, к переходу от менее упорядоченного состояния к более упорядоченному, то есть самоорганизация, присуща неживой природе в той же мере, что и живой. Нужны лишь подходящие условия для её проявления.

Выяснилось, что все  разномасштабные самоорганизующиеся системы, независимо от того, каким разделом науки они изучаются, будь то физика, химия, биология или социальные науки, имеют единый алгоритм перехода от мене сложных и менее упорядоченных к более сложным и более упорядоченным состояниям. Тем самым открывается возможность единого теоретического описания подобных процессов во времени и пространстве.

 

       3.4 Концепции панспермии.

 
     Теория панспермии (гипотеза о возможности переноса Жизни во Вселенной с одного космического тела на другие) не предлагает никакого механизма для объяснения первичного возникновения жизни и переносит проблему в другое место Вселенной. Либих считал, что «атмосферы небесных тел, а также вращающихся космических туманностей можно считать как вековечные хранилища оживленной формы, как вечные плантации органических зародышей», откуда жизнь рассеивается в виде этих зародышей во Вселенной.

Основателем этой теории является Г. Э. Рихтер. Исходя из представления, что в мировом пространстве везде носятся маленькие частицы твердого вещества (космозои), отделившиеся от небесных тел одновременно с этими частицами, может быть прилепившись к ним, носятся жизнеспособные зародыши микроорганизмов. Таким образом, эти зародыши могут переноситься с одного, заселенного организмами небесного тела на другое, где жизни еще нет. Если на этом последнем уже создались благоприятные жизненные условия, в смысле подходящей температуры и влажности, то зародыши начинают прорастать, развиваться и являются впоследствии родоначальниками всего органического мира данной планеты.

Эта теория приобрела в научном мире много сторонников, между которыми были даже такие выдающиеся умы, как Гельмгольц и В.Томсон. Ее защитники стремились главным образом научно обосновать возможность такого переноса зародышей с одного небесного тела на другое, при котором сохранялась бы жизнеспособность этих зародышей. Главный вопрос заключается именно в том, может ли спора совершить такое длительное и полное опасностей путешествие, как перелет из одного мира в другой, не погибнув, сохранив способность, прорасти и развиться в новый организм. Разберем подробно, какие опасности встречаются на пути зародыша.

Прежде всего, это холод  межпланетного пространства (220°  ниже нуля). Отделившись от родной планеты, зародыш обречен долгие годы, столетия и даже тысячелетия носиться при такой ужасающей температуре, прежде чем представиться случай опуститься на новую. А способен ли зародыш выдержать такое испытание? Для решения этого вопроса обращались к исследованию устойчивости по отношению к холоду современных нам спор. Опыты, произведенные в этом направлении, показали, что холод зародыши микроорганизмов выносят превосходно. Они сохраняют свою жизнеспособность даже после шестимесячного пребывания при 200° ниже нуля. Конечно, 6 месяцев не 1000 лет, но все же опыт дает нам право предполагать, что, по крайней мере, некоторые из зародышей могут перенести страшный холод межпланетного пространства.

Гораздо большую опасность  для зародышей представляет их полная незащищенность от световых лучей. Их путь меж планетами пронизан лучами солнца, губительными для большинства микробов. Некоторые бактерии погибают от действия прямых солнечных лучей уже в течение нескольких часов, другие более устойчивы, но на всех без исключения микробов очень сильное освещение действует неблагоприятно. Однако это неблагоприятное действие в значительной степени ослабляется в отсутствие кислорода воздуха, а мы знаем, что в межпланетном пространстве воздуха нет, и потому можем не без основания предполагать, что зародыши жизни выдержат и это испытание.

Но вот счастливый случай дает возможность зародышу попасть в сферу притяжения какой-либо планеты с благоприятными для развития жизни условиями температуры и влажности. Скитальцу осталось, только, подчиняясь силе тяжести, упасть на его новую Землю. Но как раз тут и ждет его грозная опасность. Ранее зародыш носился в безвоздушном пространстве, но теперь, прежде чем упасть на поверхность планеты, он должен пролететь через довольно толстый слой воздуха, окутывающий со всех сторон эту планету.

Всем, конечно, хорошо известно явление «падающих звезд» — метеоров. Современная наука объясняет это явление следующим образом. В межпланетном пространстве носятся твердые тела и частицы различных размеров, возможно, осколки планет или комет, залетевшие в нашу солнечную систему из отдаленнейших мест Вселенной. Пролетая поблизости от земного шара, они притягиваются этим последним, но, прежде чем упасть на его поверхность, они должны пролететь через воздушную атмосферу. Вследствие трения о воздух, быстро падающий метеорит нагревается до белого каления и становится видимым на темном небесном своде. Только немногие из метеоритов достигают земли, большинство сгорает от сильного жара еще далеко от ее поверхности.

Подобной же участи должны подвергнуться и зародыши. Однако различные соображения показывают, что подобного рода гибель не является обязательной. Есть основания предполагать, что, по крайней мере, некоторые из зародышей, попавшие в атмосферу той или иной планеты, доберутся до ее поверхности жизнеспособными.

Вместе с тем не нужно забывать о тех колоссальных астрономических промежутках времени, в течение которых Земля могла засеваться зародышами из других миров. Эти промежутки исчисляются миллионами лет! Если за это время из многих миллиардов зародышей хотя бы один добрался благополучно до поверхности Земли и нашел здесь подходящие для своего развития условия, то этого было бы уже достаточно для образования всего органического мира. Между тем эта возможность при современном состоянии науки представляется хотя и маловероятной, но допустимой; во всяком случае, у нас нет фактов, которые ей прямо противоречили бы.

Однако теория панспермии является ответом только на вопрос происхождении земной жизни, а отнюдь не на вопрос о происхождении жизни  вообще.

Заключение

 

За последние десять лет понимание происхождения жизни сделало огромные успехи. Остается надеяться, что следующее десятилетие принесет еще больше: новые исследования очень активно ведутся во многих областях.

Но, именно, теория эволюции дает возможность понять оптимальную  стратегию взаимоотношения человека и окружающей живой природы, позволяет ставить вопрос о разработке принципов управляемой эволюции. Отдельные элементы такой управляемой эволюции уже сегодня просматриваются, например, в попытках не простого промыслового использования,  а хозяйственного управления эволюцией отдельных  видов животных и растений.

Информация о работе Основные концепции происхождения жизни