Основные понятия и значение генетики

Автор работы: Пользователь скрыл имя, 03 Сентября 2013 в 12:49, курсовая работа

Описание работы

Действительно, за неполных 100 лет после вторичного открытия законов Г. Менделя генетика прошла триумфальный путь от натурфилософского понимания законов наследственности и изменчивости через экспериментальное накопление фактов формальной генетики к молекулярно-биологическому пониманию сущности гена, его структуры и функции. На данный момент генетика является едва ли не основной наукой, среди принадлежащих к ряду естественного знания, которая имеет огромнейший потенциал и очень весомую значимость для общества. Отрадно, что развитие ее идет поступательно и не малыми темпами. Именно поэтому я счел нужным уделить именно этой науке.

Файлы: 1 файл

курсовая по генетике.doc

— 269.50 Кб (Скачать файл)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Основные теории генетики

Краткое изложение сути гипотез  Менделя

 

Каждый признак данного  организма контролируется парой аллелей.

Если организм содержит два различных аллеля для данного  признака, то один из них (доминантный) может проявляться, полностью подавляя проявление другого (рецессивного).

При мейозе каждая пара аллелей  разделяется (расщепляется) и каждая гамета получает по одному из каждой пары аллелей (принцип расщепления).

При образовании мужских  и женских гамет в каждую из них может попасть любой аллель из одной пары вместе с любым другим из другой пары (принцип независимого распределения).

Каждый аллель передается из поколения в поколение как дискретная не изменяющаяся единица.

Каждый организм наследует  по одному аллелю (для каждого признака) от каждой из родительских особей.

Оценка теории Ламарка

 

     Выдающаяся  заслуга Ламарка заключается  в создании первого эволюционного учения. Он отверг идею постоянства видов, противопоставив ей представление об изменяемости видов. Его учение утверждало существование эволюции как исторического развития от простого к сложному. Впервые был поставлен вопрос о факторах эволюции. Ламарк совершенно правильно считал, что условия среды оказывают важное влияние на ход эволюционного процесса. Он был одним из первых, кто отметил чрезвычайную длительность развития жизни на Земле. Однако Ламарк допустил серьезные ошибки прежде всего в понимании факторов эволюционного процесса, выводя их из якобы присущего всему живому стремления к совершенству. Также неверно понимал причины возникновения приспособленности , прямо связывал их с влиянием окружающей среды. Это породило очень распространенные, но научно совершенно необоснованные представления о наследовании признаков, приобретаемых организмами под непосредственным воздействием среды.

   Эволюционное  учение Ламарка не было достаточно  доказательным и не получило  широкого признания среди его современников.

 

Основные  положения теории Дарвина и значение ее для науки

 

Основные принципы эволюционного  учения Дарвина сводятся к следующим  положением:

1. Каждый вид способен  к неограниченному размножению.

2. Ограниченность жизненных  ресурсов препятствует реализации потенциальной возможности беспредельного размножения. Большая часть особей гибнет в борьбе за существование и не оставляет потомства.

3. Гибель или успех  в борьбе за существование  носят избирательный характер. Организмы  одного вида отличаются друг от друга совокупностью признаков. В природе преимущественно выживают и оставляют потомство те особи, которые имеют наиболее удачное для данных условий сочетание признаков, т.е. лучше приспособлены.

Избирательное выживание и размножение наиболее приспособленных организмов Ч. Дарвин назвал естественным отбором.

Под действием естественного  отбора, происходящего в разных условиях, группы особей одного вида из поколения  в поколение накапливают различные  приспособительные признаки. Группы особей приобретают настолько существенные отличия, что превращаются в новые виды. 

Крупнейшие ученые в  разных странах способствовали распространению  эволюционной теории Дарвина, защищали ее от нападок и сами вносили вклад  в ее дальнейшее развитие. Дарвинизм  оказал сильнейшее влияние не только на биологию и естественные науки, но и на общечеловеческую культуру, способствуя развитию естественнонаучных взглядов на возникновение и развитие живой природы и самого человека.

 

7. Молекулярная генетика

7.1. Тонкая структура. Функциональная структура генов. Генетический код

 

   Одно из наиболее  существенных достижений молекулярной  генетике заключается в установлении  минимальных размеров участка  гена, передающихся при кроссинговере  ( в молекулярной генетики вместо  термина «кроссинговера» принят термин "рекомбинация", который все еще начинают использовать и в генетике высших существ) , подвергающихся мутации и осуществляющих одну функцию. Оценки этих величин были получены в 50-е годы С. Бензером.

   Среди различных  внутригенных мутаций Бендер выделил два класса: точечные мутации (мутации минимальной протяженности) и делеции (мутации, занимающие достаточно широкую область гена). Установив факт существования точечных мутаций, Бензер задался целью определить минимальную длину участка ДНК, передаваемую при рекомбинации. Оказалось, что эта величина составляет не более нескольких нуклеотидов. Бензер назвал эту величину реконом.

     Следующим  этапом было установление минимальной  длины участка, изменения которого  достаточно для возникновении  мутации (мутона). По мнению Бензера,  эта величина равна нескольким  нуклеотидам. Однако в дальнейших  тщательных определениями было  выявлено, что длина одного мутона не превышает размер одного нуклеотида.

     Следующим  важным этапом в изучении генетического  материала было подразделение  всех генов на два типа: регуляторный гены, дающие информацию о строении регуляторных белков и структурные гены, кодирующие строение остальных полилипипедных цепей. Эта идея и экспериментальное доказательство  было разработано исследователями Ф. Жакобом и Ж. Моно (1961).

      Выяснение  основной функции гена как  хранителя информации о строении  определенной полипептидной цепи  поставило перед молекулярной генетикой вопрос : каким образом осуществляется перенос информации от генетических структур (ДНК) к морфологическим структурам, другими словами, каким образом записана генетическая информация и как она реализуется в клетке.

     Согласно  модели Уотсона - Крика, генетическую  информацию в ДНК несет последовательность  расположения оснований. Таким  образом, в ДНК заключены четыре  элемента генетической информации. В тоже время в белках было  обнаружено 20 основных аминокислот. Необходимо было выяснить, как язык четырехбуквенной записи в ДНК может быть переведен на язык двадцати буквенной записи в беках. Решающий вклад в разработку этого механизма был внесен Г. Гамовым(1954,1957). Он предположил, что для кодирования одной аминокислоты используется сочетание из трех нуклеотидов ДНК ( нуклеотидом называют соединение, состоящее из сахара {дизоксорибоза}, фосфата и основания и образующее элементарный мономер ДНК). Эта элементарная единица наследственного материала, кодирующая одну аминокислоту,  получила название кодона.

     Предположение  Гамова о трехнуклеотидном составе  кодона выглядело логически, доказать  его экспериментально долгое  время не удавалось. Только  в конце 1961 г., когда многим  стало казаться, что этот вопрос  не будут решен, была опубликована работа кембриджской группой исследователей ( Ф. Крик, Л. Барнет, С. Берннер и Р. Ваттс – Тобин), выяснившие тип кода и установивших его общую природу. Важным в их работе было то, что они с самого начала строго поставили вопрос о роли начальной , стартовой точки в гене. Они доказали, что в каждом гене есть строго фиксированная начальная точка, с которой фермент, синтезирующий РНК, начинает « прочтение « гена, причем читает его в одном направлении и непрерывно. Авторы так же доказали. Что размер кодона действительно равен трем нуклеотидам и что наследственная информация, записанная в ДНК, читается от начальной точки гена «без запятых и промежутков». 

 

 

 

 

 

7.2. Репликация  ДНК

 

      Уотсона  и Крика предложили гипотезу  строения ДНК, согласно которой, последовательность оснований в одной нити ДНК однозначно задавала последовательность оснований другой нити. Далее они предположили, что две нити ДНК раскручиваются и на каждой из них в соответствии с правилами комплиментарности синтезируются дочерни нити. Таким образом, каждая новая молекула ДНК должна содержать одну родительскую и одну дочернюю. Этот тип (полуконсервативный) репликации к концу 50 годов был экспериментально обосновали в опытах на бактериях. Опыты на высших организмах также косвенно говорили о правильности этого вывода.  В это же время А. Корнберг выделил фермент, который, как он считал, осуществляет синтез белка. Для работы фермента было необходимо наличие затворочной ДНК и всех четырех предшественников ДНК (дезоксорибонукеозидтрифосфатов). В последующем десятилетии биохимики получили огромное количество фактов о характере протекании репликационного процесса. Было выделено и охарактеризовано несколько типов ферментов, осуществляющих реплекцию (ДНК-полимераз).

 

7.3. Генетический контроль синтеза белков

 

   Важнейшим достижением  молекулярной генетики было выяснение  цепи реакций, обеспечивающих  передачу информации от ДНК  к белку. Цитохимически было  доказано, что ДНК локализована  главным образом в ядре клеток. Синтез белков, как показали исследования начала 50-х годов. происходит в основном в цитоплазме. Сразу возник вопрос: каким образом ядро может осуществлять контроль за синтезом белка в цитоплазме?

     В 30-х  годах XX в. было установлено.  что в клетках наряду с ДНК  содержится второй класс нуклеиновых кислот -рибонуклеиновые кислоты (РНК). В отличие от ДНК в РНК вместо сахара дизоксирибозы содержится также пяти-членный углевод - рибоза, а одно из пиримидиновых оснований - Тимин - заменено на урацил. Кроме того было показано, что РНК , как правило, не двуспиральная, а однонитчата.

     В (1942) Браше  и Кедровский (1951), а затем в  обширных опытах было показано, что интенсивный синтез белка  происходит в тех участках, где  сосредоточено много РНК . Было  предположено, что именно РНК переносит информацию с ДНК на белок, но только в 1961 году было воплощено в четкую гипотезу Ф. Жакобом и Ж. Моно. Они назвали такую РНК - "информационной РНК".                                                                                                                                                                                                 Основное затруднение в понимании механизма передачи генетической информации с ДНК к белку заключалось в том, что прямой синтез белка на РНК был невозможен из-за чисто стериотических не соотношений: молекулы аминокислот не совпадают с размерами кодонов. Ф. Крик в 1954 г. предложил так называемую адаптерную гипотезу, согласно которой функции перевода языка нуклеиновых кислот на язык белков должны выполнять адаптерные РНК. Это предположение подтвердилось. Было выделено более 20 низкомолекулярных РНК, которые сначала были названы растворимыми, а затем переименованы в транспортные РНК (тРНК).

             

 Хромосомная теория наследственности 

Корренс сформулировал выводы Менделя в привычной нам форме двух законов и ввел термин “фактор”, тогда как Мендель для описания единицы наследственности пользовался словом “элемент”. Позднее американец Уильям Сэттон заметил удивительное сходство между поведением хромосом во время образования гамет и оплодотворения и передачей менделевских наследственных факторов.

На основании изложенных выше данных Сэттон и Бовери высказали мнение, что хромосомы являются носителями менделевских факторов, и сформулировали так называемую хромосомную теорию наследственности. Согласно этой теории, каждая пара факторов локализована в паре гомологичных хромосом, причем каждая хромосома несет по одному фактору. Поскольку число признаков у любого организма во много раз больше числа его хромосом, видимых в микроскоп, каждая хромосома должна содержать множество факторов.

В 1909 г. Иогансен заменил термин фактор, означавший основную единицу наследственности, термином ген. Альтернативные формы гена, определяющие его проявление в фенотипе, назвали аллелями. Аллели - это конкретные формы, которыми может быть представлен ген, и они занимают одно и то же место - локус - в гомологичных хромосомах.

 

 

7.4.  Сцепление

 

Все ситуации и примеры, обсуждавшиеся до сих пор, относились к наследованию генов, находящихся в разных хромосомах. Как выяснили цитологи, у человека все соматические клетки содержат по 46 хромосом. Поскольку человек обладает тысячами различных признаков - таких, например, как группа крови, цвет глаз, способность секретировать инсулин, - в каждой хромосоме должно находиться большое число генов.

Гены, лежащие в одной  и той же хромосоме, называют сцепленными. Все гены какой-либо одной хромосомы образуют группу сцепления; они обычно попадают в одну гамету и наследуются вместе. Таким образом, гены, принадлежащие к одной группе сцепления, обычно не подчиняются менделевскому принципу независимого распределения. Поэтому при дигибридном скрещивании они не дают ожидаемого отношения 9:3:3:1. В таких случаях получаются самые разнообразные соотношения. У дрозофилы гены, контролирующие окраску тела и длину крыла, представлены следующими парами аллелей (назовем соответствующие признаки): серое тело - черное тело, длинные крылья - зачаточные (короткие) крылья. Серое тело и длинные крылья доминируют. Ожидаемое отношение фенотипов в F2 от скрещивания между гомозиготой с серым телом и длинными крыльями и гомозиготой с черным телом и зачаточными крыльями должно составить 9: 3: 3: 1. Это указывало бы на обычное менделевское наследование при дигибридном скрещивании, обусловленное случайным распределением генов, находящихся в разных, негомологичных хромосомах. Однако вместо этого в F2 были получены в основном родительские фенотипы в отношении примерно 3: 1. Это можно объяснить, предположив, что гены окраски тела и длины крыла локализованы в одной и той же хромосоме, т.е. сцеплены.

Практически, однако, соотношение 3:1 никогда не наблюдается, а возникают  все четыре фенотипа. Это объясняется  тем, что колкое сцепление встречается  редко. В большинстве экспериментов  по скрещиванию при наличии сцепления помимо мух с родительскими фенотипами обнаруживаются особи с новыми сочетаниями признаков. Эти новые фенотипы называют рекомбинантными. Все это позволяет дать следующее определение сцепления: два или более генов называют сцепленными, если потомки с новыми генными комбинациями (рекомбинанты) встречаются реже, чем родительские фенотипы.

 

Информация о работе Основные понятия и значение генетики