Автор работы: Пользователь скрыл имя, 17 Апреля 2013 в 01:10, реферат
Закон сохранения массы веществ впервые сформулирован в 1748 г. М. В. Ломоносовым. Позднее (в 1756 г.) он экспериментально обосновал этот закон. Современная формулировка закона такова: масса веществ, вступающих в химическую реакцию, равна массе веществ, образующихся в результате реакции. Независимо от Ломоносова этот закон сформулировал в 1789 г. французский химик Лавуазье
ЧАСТНОЕ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ
«МЕЖДУНАРОДНЫЙ ГУМАНИТАРНО-
ИНСТИТУТ»
Факультет заочного обучения
Кафедра социально-гуманитарных дисциплин
ОСНОВНЫЕ ЗАКОНЫ ХИМИИ
Доклад
по предмету «Основы современного естествознания»
Шинкевич Ксении Александровны
студентки 4 курса
специальности
«Международные отношения»
заочной формы обучения
гр. 2
Научный руководитель:
Мячикова И.И.
МИНСК, 2012
Основные законы химии
1 Закон сохранения массы веществ
Закон сохранения массы веществ впервые сформулирован в 1748 г. М. В. Ломоносовым. Позднее (в 1756 г.) он экспериментально обосновал этот закон. Современная формулировка закона такова: масса веществ, вступающих в химическую реакцию, равна массе веществ, образующихся в результате реакции. Независимо от Ломоносова этот закон сформулировал в 1789 г. французский химик Лавуазье. Он также получил экспериментальные доказательства закона, изучив многие реакции окисления металлов. Закон сохранения массы веществ может быть объяснен с точки зрения атомно-молекулярного учения так: при химических реакциях атомы не исчезают и не могут возникнуть из ничего; общее число атомов остается постоянным до и после реакции.
Например, при взаимодействии двухатомных молекул водорода и хлора должно образоваться столько молекул НСl, чтобы число атомов водорода и хлора осталось равным двум, т.е. две молекулы:Н2+ Cl2= 2HCl и, поскольку атомы имеют постоянную массу, не меняется и масса веществ до и после реакции.
Закон сохранения массы веществ дает материальную основу для составления уравнений химических реакций. Опираясь на него, можно производить расчеты по химическим уравнениям.
2 Закон постоянства состава вещества
К основным законам химии относится закон постоянства состава. Закон постоянства состава впервые сформулировал французский ученый-химик Ж. Пруст в 1808 г. Всякое чистое вещество независимо от способа его получения всегда имеет постоянный качественный и количественный состав.
Рассмотрим, например, состав оксида углерода (IV) (углекислого газа) СО2. Он состоит из углерода и кислорода (качественный состав). Содержание углерода в СО2 27,27%, кислорода — 72,73% (количественный состав). Получить углекислый газ можно многими способами: синтезом из углерода и кислорода, из оксида углерод (II) и кислорода, действием кислот на карбонаты и др. Во всех случаях чистый оксид углерода (IV) будет иметь приведенный выше состав независимо от способа получения.
Атомно-молекулярное учение позволяет объяснить закон постоянства состава. Поскольку атомы имеют постоянную массу, то и массовый состав вещества в целом постоянен.
Известны соединения переменного состава, для которых закон Пруста несправедлив, например, сверхпроводники общей формулы YBa2CU3O7-x.
3 Закон кратных отношений
Закон кратных отношений открыт
в 1803г. Дж.Дальтоном и истолкован
им с позиций атомизма. Атомизм — натурфилософская и
Если два химических элемента дают несколько соединений, то весовые доли одного и того же элемента в этих соединениях, приходящиеся на одну и ту же весовую долю второго элемента, относятся между собой как небольшие целые числа.
Например: N2O N2O3 NO2(N2O4) N2O5. Число атомов кислорода в молекулах этих соединений, приходящиеся на два атома азота, относятся между собой как 1 : 3 : 4 : 5.
4 Закон объемных отношений
Открыл Гей-Люссак в 1808 г. "Объемы газов, вступающих в химические реакции, и объемы газов, образующихся в результате реакции, относятся между собой как небольшие целые числа".
Следствие. Стехиометрические коэффициенты в уравнениях химических реакций для молекул газообразных веществ показывают, в каких объемных отношениях реагируют или получаются газообразные вещества.
Примеры.
a) 2CO + O2 --> 2CO2
При окислении двух объемов оксида углерода (II) одним объемом кислорода образуется 2 объема углекислого газа, т.е. объем исходной реакционной смеси уменьшается на 1 объем.
b) При синтезе аммиака из элементов:
n2 + 3h2 --> 2nh3
Один объем азота реагирует с тремя объемами водорода; образуется при этом 2 объема аммиака - объем исходной газообразной реакционной массы уменьшится в 2 раза.
5 Уравнение Клайперона-
Основным уравнением, характеризующим состояние идеального газа, является уравнение Клайперона-Менделеева.
Уравнение состояния идеального газа,
выведенное П. Э Клапейроном в 1834 г., объединившее
закон Бойля-Мариотта и закон Гей-Люссака.
представляет собой зависимость
между параметрами идеального газа
(давлением p, объемом V и абсолютной температурой
T) определяющими его состояние.
В 1874 г. Д. И. Менделеев на основе
уравнения Клайперона вывел уравнение
для 1 моля идеального газа, получившее
название уравнения Клапейрона – Менделеева.
Уравнение состояния идеального газа — формула, устанавливающая зависимость между давлением, молярным объёмом и абсолютной температурой идеального газа. Уравнение имеет вид:
,
где
— давление,
— молярный объём,
— универсальная газовая постоянная,
— абсолютная температура, К.
6 Закон Авогадро
Закон Авогадро — одно из важных основных положений химии, гласящее, что «в равных объёмах различных газов, взятых при одинаковых температуре и давлении, содержится одно и то же число молекул». Было сформулировано ещё в 1811 году Амедео Авогадро, профессором физики в Турине.
Первые количественные исследования реакций между газами принадлежат французскому ученому Гей-Люссаку. Он является автором законов о тепловом расширении газов и закона объемных отношений. Эти законы были объяснены в 1811 году итальянским физиком Амедео Авогадро.
В равных объемах различных газов при одинаковых условиях (температура, давление и т.д.) содержится одинаковое число молекул.
Закон справедлив только для газообразных веществ.
Следствия:
1. Одно и то же число молекул
различных газов при
2. При нормальных условиях (0°C = 273°К , 1 атм = 101,3 кПа) 1 моль любого газа занимает объем 22,4 л.
7 Периодический закон Менделеева
Периодический закон — фундаментальный закон природы, открытый Д. И. Менделеевым в 1869 году при сопоставлении свойств известных в то время химических элементов и величин их атомных масс.
Периодический закон был сформулирован Д. И. Менделеевым в следующем виде (1871): «свойства простых тел, а также формы и свойства соединений элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса».
С развитием атомной физики и квантовой химии Периодический закон получил строгое теоретическое обоснование. Благодаря классическим работам Й. Ридберга (1897), А. Ван-ден-Брука (1911), Г. Мозли (1913) был раскрыт физический смысл порядкового (атомного) номера элемента. Позднее была создана квантово-механическая модель периодического изменения электронного строения атомов химических элементов по мере возрастания зарядов их ядер (Н. Бор, В. Паули, Э. Шрёдингер, В. Гейзенберг и др.).
В настоящее время Периодический закон Д. И. Менделеева имеет следующую формулировку: «свойства химических элементов, а также формы и свойства образуемых ими простых веществ и соединений находятся в периодической зависимости от величины зарядов ядер их атомов».
Особенность Периодического закона среди других фундаментальных законов заключается в том, что он не имеет выражения в виде математического уравнения. Графическим (табличным) выражением закона является разработанная Менделеевым Периодическая система элементов.
Периодический закон универсален для Вселенной: как образно заметил известный русский химик Н. Д. Зелинский, Периодический закон явился «открытием взаимной связи всех атомов в мироздании».