Открытия Ломоносова

Автор работы: Пользователь скрыл имя, 15 Ноября 2013 в 16:33, реферат

Описание работы

Одним из наилучших естественнонаучных достижений М.В. Ломоносова, является его молекулярно-кинетическая теория тепла. В середине XVIII века в современной науке господствовала «теория теплорода», впервые выдвинутая Робертом Бойлем. В основе этой теории лежало представление о некой «огненной материи», посредством которой распространяется и передается тепло, а также огонь. Ломоносов обращает внимание научного сообщества на то, что ни расширение тел по мере нагревания, ни увеличение веса при обжиге, ни фокусировка солнечных лучей линзой, не могут быть качественно объяснены «теорией теплорода».

Содержание работы

Открытия Ломоносова в молекулярно-кинетической теории
Открытия Ломоносова в химии
Работы Ломоносова в науке о стекле

Файлы: 1 файл

Открытия Ломоносова.docx

— 24.97 Кб (Скачать файл)

Открытия Ломоносова

Естественные науки:

  • Открытия Ломоносова в молекулярно-кинетической теории
  • Открытия Ломоносова в химии
  • Работы Ломоносова в науке о стекле

 

Открытия Ломоносова в  молекулярно-кинетической теории

Одним из наилучших естественнонаучных достижений М.В. Ломоносова, является его молекулярно-кинетическая теория тепла. В середине XVIII века в современной науке господствовала «теория теплорода», впервые выдвинутая Робертом Бойлем. В основе этой теории лежало представление о некой «огненной материи», посредством которой распространяется и передается тепло, а также огонь. Ломоносов обращает внимание научного сообщества на то, что ни расширение тел по мере нагревания, ни увеличение веса при обжиге, ни фокусировка солнечных лучей линзой, не могут быть качественно объяснены «теорией теплорода». Связь тепловых явлений с изменением массы, отчасти, и породили представление о том, что масса увеличивается вследствие проникновения теплорода в поры тел. Но Михаил Ломоносов спрашивает: почему же при охлаждении тела теплород остаётся, а сила тепла теряется? Опровергнув «теорию теплорода», Ломоносов предлагает свою теорию, в которой он убирает лишнее понятие теплорода.

«Достаточное основание  теплоты», по мнению М.В. Ломоносова заключается:

  1. «в движении какой-то материи» - так как «при прекращении движения уменьшается и теплота«, а «движение не может произойти без материи»;
  2. «во внутреннем движении материи», так как недоступно чувствам;
  3. «во внутреннем движении собственной материи» тел, то есть «не посторонней»;
  4. «во вращательном движении частиц собственной материи тел», так как «существуют весьма горячие тела без» двух других видов движения «внутреннего поступательного и колебательного».

Итак, Ломоносов доказал, что причиной теплоты является внутреннее вращательное движение связанной материи.

Эти рассуждения имели огромный резонанс в современной европейской  науке. Теория, как и подобает, более  критиковалась, чем принималась  учеными. В большей степени критика  была направлена на следующие стороны  теории:

  1. частицы Ломоносова обязательно шарообразны, (что не доказано);
  2. утверждение, что колебательное движение влечет за собой распад тела, и поэтому, не может служить источником тепла, но, напротив, общеизвестно, что частицы колоколов колеблются веками и колокола не рассыпаются;

М. В. Ломоносов считает, что все тела состоят из корпускул - молекул, которые являются «собраниями» элементов - атомов. В своей диссертации «Элементы математической химии» (1741 год; диссертация незавершенна) учёный дает такое определения: «Элемент есть часть тела, не состоящая из каких-либо других меньших и отличающихся от него тел Корпускула есть собрание элементов, образующее одну малую массу».

В более поздней работе (1748 год) он вместо «элемента» употребляет слово  «атом», а вместо «корпускула» - партикула - «частица» или «молекула». «Элементу» Ломоносов даёт современное значение - в смысле предела делимости тел - последней составной их части. Древние говорили: «Как слова состоят из букв, так и тела - из элементов». Атомы и молекулы у М.В. Ломоносова - «физические нечувствительные частицы», чем подчёркивается, что эти частицы чувственно неощутимы. Ломоносов  показывает различие «однородных» корпускул, то есть состоящих из «одинакового числа одних и тех же элементов, соединенных одинаковым образом», и «разнородных» - состоящих из различных элементов.

Своей корпускулярно-кинетической теорией  тепла М.В. Ломоносов предвидел многие гипотезы, сопутствовавшие дальнейшему развитию атомистики и теорий строения материи. В его положениях, логических построениях и доказательствах можно наблюдать следующие аналогии с представлениями, ставшими актуальными более чем сто лет спустя:

  1. Атомы - шарообразные вращающиеся частицы - следующий шаг был сделан только с гипотезой электрона (1874 год; точнее, ещё позже - с появлением модели вращательного движении частиц вокруг ядра - электронная конфигурация, вращательная симметрия), увеличение скорости вращения сказывается повышением температуры, а покой - предвосхищает мысль об абсолютном нуле и невозможности его достижения (второе начало термодинамики - 1850 год;
  2. по Джоулю (1844 год) теплота - следствии вращательного движения молекул; теплота, как следствие вращения частиц - у У.Д. Рэнкина - при обосновании второго закона термодинамики);
  3. М.В. Ломоносов впервые использует геометрическую модель для доказательства, связанного с формой, строением и взаимодействием разной величины шарообразных атомов;
  4. опытным путём вплотную приблизился к открытию водорода;
  5. дал кинетическую модель идеального газа, по отдельными положениям, при ряде поправок - соответствующую принятой в дальнейшем;
  6. демонстрирует зависимость между объёмом и упругостью воздуха (см. закон Бойля-Мариотта), тут же указывает на дискретность её для воздуха при сильном его сжатии, что определяет конечный размер его молекул - настоящая мысль применена Я. Д. Ван-дер-Ваальсом в выводе уравнения реального газа;
  7. рассматривая тепло и свет (1756-1757), М.В. Ломоносов приходит к выводам о вращательном («коловратном») распространении частиц тепла и волновом («зыблющемся») - частиц света (в 1771 году тепловое излучение, «лучистую теплоту», рассматривает К. В. Шееле);
  8. русский учёный говорит об одном происхождении света и электричества, что, при определённых поправках на общие представления времени, сопоставимо с положениями электромагнитной теории Д.К. Максвелла.

Некоторые из этих утверждений в  той или иной форме в дальнейшем высказывались другими учёными, в едином рассмотрении - никем. Справедливость этих аналогий и предшествие гипотез М.В. Ломоносова достаточно убедительно показаны химиком и историком науки Н.А. Фигуровским и многими другими учёными.

Вращательное движение М.В. Ломоносов открыл и положил в основу своей «Натуральной философии», как один из фундаментальных принципов мироздания. При всём умозрительно-философском характере и логике идей М.В. Ломоносова (учёный достаточно широко использовал и математический аппарат, но математика сама по себе ни есть «абсолютный гарант достоверности».

Выводы механической теории теплоты, подтвердив саму её, впервые обосновали гипотезу об атомно-молекулярном строении материи - атомистика получила объективные  естественнонаучные доказательства. С  корпускулярной теорией и молекулярно-кинетическими  взглядами М.В. Ломоносова напрямую связанно его понимание актуальности закона сохранения вещества и силы. Принцип сохранения силы для него стал начальной аксиомой в рассмотрении аргументов в обосновании молекулярного теплового движения. Принцип этот регулярно применяется им в ранних работах. В диссертации «О действии химических растворителей вообще» (1743 год) он пишет: «Когда какое-либо тело ускоряет движение другого, то сообщает ему часть своего движения; но сообщить часть движения оно не может иначе, как теряя точно такую же часть». Похожи соображения о принципе сохранения вещества, показывающего несостоятельность теории теплорода. Руководствуясь им, М.В. Ломоносов выступает с критикой идей Р. Бойля о преобразовании огня в «стойкую и весомую» субстанцию. В 1774 году А. Л. Лавуазье опубликует работу, в которой описаны аналогичные опыты; позднее им был сформулирован и опубликован закон сохранения вещества - результаты опытов М.В. Ломоносова не были опубликованы, поэтому о них стало известно спустя 100 лет.

В письме к Л. Эйлеру Ломоносов формулирует свой «всеобщий естественный закон» (5 июля 1748 года). Повторяя его в диссертации «Рассуждение о твердости и жидкости тел»: ...Все перемены, в натуре случающиеся, такого суть состояния, что, сколько чего у одного тела отнимется, столько присовокупится к другому, так ежели где убудет несколько материи, то умножится в другом месте... Сей всеобщий естественный закон простирается и в самые правила движения, ибо тело, движущее своею силою другое, столько же оные у себя теряет, сколько сообщает другому, которое от него движение получает.

Являясь противником теории флогистона, М.В. Ломоносов, тем не менее, вынужден был делать попытки согласования её со своей «корпускулярной философией», что было естественно в современной ему всеобщей «конвенциональности» относительно теории «невесомых флюидов» - иначе он не только не был бы понят, но его идеи вообще не были бы приняты к рассмотрению. Но учёный уже подвергает критике Г.Э. Шталя: «Так как восстановление производится тем же, что и прокаливание, даже более сильным огнем, то нельзя привести никакого основания, почему один и тот же огонь то внедряется в тела, то из них уходит».

Основные сомнения М.В. Ломоносов с вопросом невесомости флогистона, который, удаляясь при кальцинации из металла, даёт возрастание веса продукта прокаливания - в чём учёный усматривает явное противоречие «всеобщему естественному закону». М.В. Ломоносов оперирует флогистоном как материальным веществом, которое легче воды - по существу указывая на то, что это - водород. В диссертации «О металлическом блеске» (1745 год) он пишет: « При растворении какого-либо неблагородного металла, особенно железа, в кислотных спиртах из отверстия склянки вырывается горючий пар, который представляет собой не что иное, как флогистон, выделившийся от трения растворителя с молекулами металла и увлеченный вырывающимся воздухом с более тонкими частями спирта. Ибо:

  1. чистые пары кислых спиртов невоспламенимы;
  2. извести металлов, разрушившихся при потере горючих паров, совсем не могут быть восстановлены без добавления какого-либо тела, изобилующего горючей материей»

К аналогичному выводу («горючий воздух» - флогистон, позднее названный водородом), более 20 лет спустя пришел английский ученый Г. Кавендиш, который был уверен, что его открытие разрешает все  противоречия теории флогистона. Идентичный вывод М.В. Ломоносова в работе «О металлическом блеске» (1751 год) «остался незамеченным», М. В. Ломоносов своей «корпускулярной философией» не только подвергает критике наследие алхимии и ятрохимии, но, выдвигая продуктивные идеи, использовавшиеся им на практике - формирует новую теорию, которой суждено было стать фундаментом современной науки.

Открытия Ломоносова в  химии

Основная область деятельности М. В. Ломоносова считается химия.

В 1740-х годах М.В. Ломоносов в «собственноручных черновых тетрадях» «Введение в истинную физическую химию», и «Начало физической химии потребное молодым, желающим в ней совершенствоваться» уже задал образ будущей новой науки, более строго оформившийся к январю 1752 года, о чём учёный пишет в итогах 1751-го: «Вымыслил некоторые новые инструменты для Физической Химии», а в итогах 1752-го - «диктовал студентам и толковал сочиненные мною к Физической Химии пролегомены на латинском языке, которые содержатся на 13 листах в 150 параграфах, со многими фигурами на шести полулистах». Тогда М.В. Ломоносовым была намечена огромная программа изучения растворов, которая не полностью реализована и по сию пору.

Михайло Ломоносовым были заложены основы физической химии, когда он сделал попытку объяснения химических явлений  на основе законов физики и его  же теории строения вещества. Физическая химия, есть наука, объясняющая на основании  положений и опытов физики то, что  происходит в смешанных телах  при химических операциях.

Леонард Эйлер говорит  о Михаиле Ломоносове не только и не столько как о сформировавшем новую научную методику, сколько как о первенствующем в основоположении новой науки - физической химии вообще: Сколь много я удивлялся проницательности и глубине вашего остроумия в изъяснении крайне трудных химических вопросов; так равномерно ваше письмо мне было приятно... Из сочинений ваших с превеликим удовольствием усмотрел я, что в истолковании химических действий далече от принятого у Химиков порядка отступили, и с обширным искусством в практике высокое знание с обширным искусством всюду соединяете. По сему не сумневаюсь, чтобы вы нетвердая ещё и сомнительные основания сия науки не привели к совершенной достоверности, так что ей после место в Физике по справедливости дано может быть.

Важной особенностью науки, основу которой заложил Ломоносов, явился его метод, подразумевающий исследование связи физических и химических явлений. Постоянно занимаясь практической наукой, он нашёл подтверждение в ней своим теоретическим воззрениям, но не только тому служит эксперимент - учёный применяет его для развития практики как таковой, опирающейся на понимание закономерностей тех или иных процессов. Настоящая методика касается не только химии и физики, но и вопросов химизма, сопровождающего электрические опыты и оптические явления - свойств объектов исследования, химического их состав и молекулярного строения. Все эти факторы говорят о хорошо осознанной, разработанной и последовательно применяемой системе взглядов и приёмов, которая, с точки зрения теории познания даёт корректное экспериментальное подтверждение гипотезам, способным вследствие того становиться основой теории. Этот методологический круг можно определить, перефразируя самого учёного, как «оживляющий» теорию и делающий практику «зрячей».

Работы Ломоносова в  науке о стекле

Ломоносовым разработана технология цветных стёкол. Эту методику Михаил Васильевич применял в промышленной варке цветного стекла и при создании изделий из него. Стекольное производство того времени имело в своём распоряжении весьма скудный ассортимент реактивов, что, конечно, сказывалось на окраске изделий: производившееся Санкт-Петербургским стеклянным заводом было в основном бесцветно, или окрашено в синий и зелёный цвета. Учёный работал со стёклами и другими силикатными расплавами ещё в процессе изучения им технологии горнорудного и металлического дела в Германии. В 1751 году Санкт-Петербургский Стеклянный завод через Академию наук заказал исследования по разработке цветных стёкол М.В. Ломоносову. Эмпирическая технология стеклоделия тогда применялась только практиками, не владевшими никакими научными методами. М.В. Ломоносов первым заявляет о необходимости знания химии для создания стёкол.

Информация о работе Открытия Ломоносова