Роль математики в современном естествознании

Автор работы: Пользователь скрыл имя, 21 Мая 2015 в 12:26, реферат

Описание работы

Известно, что еще в древние времена математике придавалось большое значение. Девиз первой академии - платоновской академии - «Не знающие математики сюда не входят» - ярко свидетельствует о том, насколько высоко ценили математику на заре науки, хотя в те времена основным предметом науки была философия.
Простейшие в современном понимании математические начала, включающие элементарный арифметический счет и простейшие геометрические измерения, служат отправной точкой естествознания.
«Тот, кто хочет решить вопросы естественных наук без помощи математики, ставит неразрешимую задачу. Следует измерять то, что измеримо, и делать измеримым то, что таковым не является», - утверждал выдающийся итальянский физик и астроном, один из основоположников естествознания Галилео Галилей (1564-1642).

Содержание работы

Введение
1 Общие представления о математике 5
1.1 Предмет и специфика математики 5
1.2 Сущность математики и история ее развития 7
2 Математика в естествознании 11
2.1 Математика - источник представлений и концепций в естествознании 11
2.2 Математика - язык точного естествознания 14
Заключение 21
Список использованной литературы 24

Файлы: 1 файл

2 курс работы.docx

— 39.77 Кб (Скачать файл)

Многие выдающиеся ученые XX в., в особенности физики, говорили о значении математики как важнейшего средства для точного выражения научной мысли. Н. Бор указывал на огромную роль математики в развитии теоретического естествознания и говорил, что математика - это не только наука, но и язык науки. Р. Фейнман отмечал, что математика - это язык плюс мышление, как бы язык и логика вместе. Однако в то же время он считал, что такой науки, как математика, не существует.

Различные варианты тезиса Шопенгауэра о том, что математика не способствует, а затемняет понимание реальных явлений, характерны и для наших дней. Так, иногда противопоставляют объяснение явлений их пониманию, полагая, что количественный язык и методы математики в лучшем случае содействуют объяснению явлений неорганической природы,

но не могут дать ничего ценного в понимании процессов культурно-исторической и духовной жизни. При этом понимание рассматривается как чисто интуитивная деятельность мышления, вследствие чего отрицается возможность использовать для его анализа логико-рациональные, в том числе математические, средства исследования. В настоящее время к применению количественного языка математики особенно критически настроены ученые, занимающиеся исследованием сложных биологических, психических и социальных процессов и привыкшие больше доверять опыту и интуиции, чем их математическому анализу.

2 МАТЕМАТИКА В ЕСТЕСТВОЗНАНИИ

2.1 Математика - источник представлений и концепций в естествознании

Назначение математики состоит в том, она вырабатывает для остальной науки, прежде всего для естествознания, структуры мысли, формулы, на основе которых можно решать проблемы специальных наук.

Это обусловлено особенностью математики описывать не свойства вещей, а свойства свойств, выделяя отношения, независимые от каких-либо конкретных свойств, то есть отношения отношений. Но поскольку и отношения, выводимые математикой, особые (будучи отношениями отношений), то ей удается проникать в самые глубокие характеристики мира и разговаривать на языке не просто отношений, а структур, определяемых как инварианты систем. Поэтому, кстати сказать, математики скорее говорят не о законах (раскрывающих общие, существенные, повторяющиеся и т.д. связи), а именно о структурах.

Эти глубинные проникновения в природу и позволяют математике исполнять роль методологии, выступая носителем плодотворных идей. Относительно сказанного современный американский исследователь Ф. Дайсон пишет: «Математика для физики - это не только инструмент, с помощью которого она может количественно описать явление, но и главный источник представлений и принципов, на основе которых зарождаются новые теории». Близкие мысли высказывает известный математик, академик Б. Гнеденко, также подчеркивая, что роль математики не ограничивается функцией аппарата вычисления, подчеркивал, что математика - определенная концепция природы.

Поскольку привилегия математики - выделять чистые, безотносительные к какому-либо физическому (химическому или социально насыщенному содержанию), она тем самым вырабатывает модели возможных еще неизвестных науке состояний. Естествоиспытатель может выбирать из них и примеривать к своей области исследования. Это стимулирует научный поиск, пробуждая и будоража ученую мысль. В силу указанной особенности математику характеризуют как склад готовых костюмов, пошитых на все живые существа, мыслимые и немыслимые (Р. Фейнман), вообще на все возможные природные ситуации. То есть это своеобразный портной для разнообразных вещественных образований, которые могут быть вписаны в эти готовые одежды. Характеризуя рассматриваемую особенность отношений между математикой и физикой, американский физик-теоретик венгерского происхождения Е. Вигнер в режиме шутки произнес: «Физики - безответственные люди: они берут готовые математические уравнения и используют их, не зная, верны они или нет».

В свое время И. Кант метко определил: «Математика - наука, брошенная человеком на исследование мира в его возможных вариантах». Если физику или вообще естествоиспытателю позволено видеть мир таким, каков он есть, то математику дано видеть мир во всех его логических вариантах. Иначе сказать, физик не может строить мир, противоречивый физически (и уж тем более - логически), математику же разрешены построения, противоречивые физически, лишь бы они не страдали логическими противоречиями. Физики говорят, каков мир, математики исследуют, каким бы он мог быть в его потенциальных версиях. Это и придает стимул воображению. Как замечает австрийский математик и писатель нашего времени Р. Музиль, математика есть роскошь броситься вперед, очертя голову, потому математики предаются самому отважному и восхитительному авантюризму, какой доступен человеку. Стоит заметить лишь, что раскованность и рискованность - преимущество не только собственно математика, но и любого исследователя, если и поскольку он мыслит математически, то есть, пытаясь дать, по выражению Г. Вейля, «теоретическое изображение бытия на фоне возможного».

Здесь не должно сложиться впечатления о возможности бескрайней фантазийной деятельности ученого. Истина состоит в том, что нематематические науки, сталкиваясь с запретами в проявлении какого-либо свойства, действия, не знают границ, до которых распространяется их компетенция. Это способна определить и узаконить лишь математика, владеющая искусством расчета на основе количественного описания явлений. Другие науки знают лишь, что нечто разрешено, но они не умеют знать той черты, до которой это разрешено, не умеют устанавливать пределов возможного - той количественной меры, определяющей вариантность изменений. Скажем, биолог не располагает сведениями пределов возможного для жизни и познает их в диапазоне лишь наблюдаемого.

Методологическое значение математики для других наук проявляется еще в одном аспекте. Поскольку ее абстракции отвлечены от конкретных свойств, она способна проводить аналогии между качественно различными объектами, переходить от одной области реальности к другой. Д. Пойа назвал это свойство математики умением «наводить мосты над пропастью». Там, где конкретная наука останавливается (кончается ее компетенция), математика в силу ее количественного подхода к явлениям, свободно переносит свои структуры на соседние, близкие и далекие, регионы природы.

Таковы некоторые методологические уроки, внушаемые математикой. Однако, сколь ни эффективна математическая наука, и на нее брошены некоторые тени, а лучше сказать: эти тени - есть продолжение ее достоинств (при неадекватном использовании последних).

Мы говорим: математический аппарат исследования применим там, где выявлена однородность, точнее сказать, математика и приводит природные образования к однородностям. Но тем самым она лишает мир многообразия и богатства качественных проявлений, ибо счет, по выражению отечественного математика современности И. Шафаревича, «убивает индивидуальность». Он пишет. Мы имеем, скажем, яблоко, цветок, кошку, дом, солдата, студента, луну. Можно сосчитать и объявить, что их семь. Но семь чего? Единственный ответ: «7 предметов». Различия между солдатом, луной, яблоком и т.д. исчезают. Они все потеряли свою индивидуальность и превратились в лишенные признаков «предметы». То есть счет выравнивает вещи, убирая «персональные» характеристики. Как шутил В. Маяковский, математику все едино: он может складывать окурки и паровозы.

Описывая объект, процесс, математика выявляет какую-то лишь одну (существенную) характеристику и, прослеживая ее вариации, выводит закономерность. Все остальные характеристики уходят в тень, иначе они будут мешать исследованию. Конечно, эти другие также могут оказаться предметом изучения, но будучи взяты по тому же математическому сценарию: каждый раз только один единственный параметр, одно выделенное свойство в отвлечении от остального разнообразия. Напрашивается аналогия. Ее проводит Ю. Шрейдер, называя математику пародией на природу. И в самом деле. Пародия схватывает какую-то одну характеристическую черту пародируемого, за которой уже не видно других особенностей, просто они не важны.

Однако из этого обстоятельства не следуют лишь негативные выводы. Во-первых, математика по-иному работать не может, а во-вторых, в подобном подходе свое преимущество, оно сопряжено, так сказать, с «чистотой» описания: налицо четкая заданность исследования, когда необходимо проследить «поведение» объекта на основе определенного свойства, вычленить линию изменений, тенденцию развития и передать информацию в строгих графиках, схемах, уравнениях.

Используя математические методы исследования, вовлекая их в познавательный поиск, науки должны учитывать возможности математики, считаясь с границами ее применимости. Имеется в виду то, что сама по себе математическая обработка содержания, его перевод на язык количественных описаний не дает прироста информации.

Таким образом, можно подчеркнуть важную роль этой математики как языка, арсенала особых методов исследования, источника представлений и концепций в естествознании.

2.2 Математика - язык точного естествознания

«... Все законы выводятся из опыта. Но для выражения их нужен специальный язык. Обиходный язык слишком беден, кроме того, он слишком не определен для выражения столь богатых содержанием точных и тонких соотношений. Таково первое основание, по которому физик не может обойтись без математики; она дает ему единственный язык, на котором он в состоянии изъясняться». Математика - наука о количественных отношениях действительности. «Подлинно реалистическая математика, подобно физике, представляет собой фрагмент теоретической конструкции одного и того же реального мира». (Г. Вейль) Она является междисциплинарной наукой. Результаты ее используются в естествознании и общественных науках. Роль математики в современном естествознании проявляется в том, что новая теоретическая интерпретация какого-либо явления считается полноценной, если удается создать математический аппарат, отражающий основные закономерности этого явления. Во многих случаях математика играет роль универсального языка естествознания, специально предназначенного для лаконичной точной записи различных утверждений. Точность есть выражение однозначности, исключающее вариантность, разброс значений, неопределенность. Этим и отличаются математические знаки - символы, обозначающие объекты и операции математики. Здесь символы жестко привязаны к значениям, не допуская разночтений, интерпретаций и объяснений, что имеет место относительно знаков других наук.

Огромные успехи точных математических наук привели к появлению среди ученых, особенно среди физиков, веры в то, что все реально наблюдаемое в их опытах подчиняется законам математики вплоть до мельчайших деталей. Установление математических законов, которым подчиняется физическая реальность, было одним из самых поразительных чудесных открытий, сделанных человечеством. Ведь математика не основана на эксперименте, а порождена человеческим разумом.

Когда физик использует свои знания для предсказаний и на основе нескольких экспериментов, проведенных в конкретное время и в конкретном месте, и подходящей теории пытается объяснить явления природы, происходящие в совершенно другом месте и в совершенно другое время, и такие предсказания сбываются, то это граничит с чудом. Физик при этом лишь с удовлетворением заключает, что, по-видимому, теория верна. Но почему, собственно говоря, реально существующий мир должен подчиняться теории, математической структуре? Кант дал на этот вопрос остроумный ответ: само наше восприятие выстраивает действительность, т. е. то, что отражается нашим разумом и воспринимается как реальность, подчиняется математическим законам.

Другая мысль такова: в смирительную рубашку математики природу одевает вовсе не наша чувственная или познавательная деятельность, а сама природа в ходе своего эволюционного развития вкладывает математику в наш разум как реально существующую структуру, неотъемлемую от нее самой. Развитие наших способностей к абстрагированию и манипулированию логическими символами должно быть ориентировано на реально существующие структуры реального мира.

«Вступая на проложенный древними путь, скажем вместе с ними, что если приступить к божественному нам дано только через символы, то всего удобнее воспользоваться математическими из-за их непреходящей достоверности» (Н.Кузанский).

Допустим, вы физик и в вашем распоряжении имеется уравнение, описывающее некоторые физические явления, например состояние движения. «Обрушив» на это уравнение всю мощь математического анализа, вы обнаружите множество регулярностей, упорядоченностей, о которых, возможно, и не подозревали. Предположим, речь идет о равноускоренном движении:

S = Vt + at / 2,

где S - путь,

V - начальная скорость,

a - ускорение,

t - время движения.

Вам необходимо определить формулу скорости:

V = dS / dt = V + at.

Формула скорости найдена легко и не без изящества.

Совершенно очевидно, что наши геометрические и логические возможности простираются далеко за пределы окружающего мира. А это означает, что реальный мир подчиняется математическим законам в значительно большей степени, чем нам известно сейчас. Но даже если эти структурные (математические) принципы экстраполируются все более глубокими конструкциями и теоремами, то и в этом случае просто невероятно, чтобы действительность с исчерпывающей полнотой отражалась математическими конструкциями - от огромных космологических размеров и до микрочастиц. Открытыми остаются вопросы, как математика соотносится с миром и дает возможность познавать его; какой способ познания преобладает в математике - дискурсивный или интуитивный. По мнению В. Гейзенберга, «наиболее важными ему кажутся, прежде всего, математические законы природы, находящиеся за явлениями, а не сам многогранный мир явлений». Физику-теоретику нелегко с этим согласиться, но в эволюционной теории познания фактически неизбежно возникает предположение о том, что математические способности вида «хомо сапиенс» принципиально ограниченны, так как имеют биологическую основу и, следовательно, не могут полностью содержать все структуры, существующие в действительности. Иными словами, должны существовать пределы для математического описания природы.

Информация о работе Роль математики в современном естествознании