Автор работы: Пользователь скрыл имя, 07 Января 2011 в 08:14, реферат
В данном реферате рассмотрены:
Теория систем, три основных её принципа:
1. Принцип сильного звена активных систем. Эффективность таких систем повышается за счет одного сильного звена.
2. Принцип обратных связей. Обратные связи являются также фундаментальным понятием кибернетики и потому рассматриваются в следующей главе.
3. Принцип возникновения новых свойств и функций при объединении элементов в систему (принцип эмерджентности).
А также типы систем: дискретный(корпускулярный), жесткий и централизованный.
Введение
1. Понятие системы.
1. Системный подход и особенности
его применения…………………………………………………….
2. Простые и сложные системы………………….
1.3. Основы синергетики……………………………
2. Самоорганизация
2.1. Формированием идеи самоорганизации………
2.2. Понятие самоорганизации…………………….
3. Самоорганизация и самодезорганизация……
3. Происхождение жизни на Земле
3.1. Образование мантии ядра Земли…………….
3.2. Дифференциация мантии и
образование коры, гидросферы и атмосферы…………….
Заключение……………………………………………………
Использованная литература…
Одной из особенностей развития наук на современном этапе является тенденция к их интеграции, то есть объединению методов разных наук и установлению их общих закономерностей. Это проявляется в том, что достаточно часто возникают и решаются задачи, охватывающие достаточно далекие области знания. При этом рождаются общие понятия, терминология, методы.
Идея структурного единства мира, выражающегося в различной степени подобия различных классов явлений, овладевает современным научным мышлением не меньше, чем идея единой физической картины мира. Понятно, что подлинно комплексную картину мира, включающую в себя физическую, химическую, биологическую, социальную и другие формы движения материи в качестве фрагментов, можно создать только на основе науки, методы которой позволяют проникнуть в глубь структур, общих для всех наук.
Ньютоновская физика представляла мир как гигантский механизм, спроектированный по замыслу Всевышнего. Вселенная выглядела восхитительным автоматом, в котором не оставалось места случайностям, и если случай все-таки время от времени подстерегал человека, то лишь вследствие его ошибок, нерадивости или невежественности.
Конечно, кроме наук, которые позволяют достаточно точно прогнозировать события в сравнительно простых частных случаях (таких как теоретическая механика), существует еще и теория вероятностей, которая помогает предсказывать поведение систем в более сложных случаях. Вот если бы было возможно знать, например, точное распределение масс в игральной кости, все силы, приложенные к ней, начальное положение и скорость кости, определяемые бросающей ее рукой, и практически мгновенно интегрировать уравнения движения кости на компьютере, то теорию вероятностей для вычисления шансов на благоприятный исход при игре в кости не нужно было бы и использовать.
Но опыт показывает, что природе свойственны скорее непредсказуемые причуды, нежели поведение раз и навсегда заведенного автомата. Капризы погоды, неожиданные социальные потрясения, внезапные экономические коллапсы — все это наблюдалось ранее и наблюдается теперь и не свидетельствует о жесткой предопределенности событий. В связи с этим в последнее время физики и математики стали сомневаться в том, что все можно спрогнозировать, хотя бы и чисто гипотетически. Оказалось, что даже очень простые физические объекты (например, пара шаров на бильярдном столе) обнаруживают
случайное поведение, и даже если собрать и обработать огромное количество информации, то от случайности все равно избавиться нельзя. Непредсказуемость принципиальна, во всяком случае в простых системах. Другое дело — в квантовой механике: здесь случайность присутствует по своей физической сути, вероятностный характер квантово-механических предсказаний всегда оправдывается и всегда удивляет.
В настоящее время в физике достаточно часто приходится рассматривать случайности двух типов: первый — когда частиц, степеней свободы, событий или предметов так много, что в их поведении практически невозможно разобраться, второй — когда в рассматриваемых динамических системах сколь угодно малые неопределенности в их состоянии усиливаются со временем и поэтому прогнозирование их поведения практически невозможно.
Примером первого типа случайностей является поведение газа, а примером второго типа — так называемый хаос. В частности, подсчитано, что газ в объеме литровой банки содержит примерно 1022 молекул. Очевидно, ни один компьютер не может рассчитать траектории такого числа сталкивающихся друг с другом частиц. Но даже если бы с помощью какого-нибудь фантастического суперкомпьютера и удалось бы проинтегрировать все связанные между собой уравнения движения в общем виде, то совершенно невозможно было бы подставить в решение уравнений начальные условия: координаты и скорости всех 1022 молекул в какой-то момент времени. Именно поэтому для описания «больших» — макроскопических — систем физики используют такие усредненные статистические или термодинамические характеристики, как температура, давление, свободная энергия, и некоторые другие.
Многие
сценарии возникновения и поведения
хаоса изучают физики, математики,
химики, биологи, эколога, специалисты
других отраслей знаний. Существует довольно
много примеров перехода к непредсказуемому
поведению систем — хаосу. Например, непредсказуемые
колебания численности рыб или комаров
могут быть следствием хаотического поведения
соответствующих динамических систем.
Иногда приходится рассматривать обратные переходы — от хаоса к порядку. Самый типичный пример такого перехода — лазер: начиная с некоторого «порога» возбуждения, он генерирует упорядоченное (когерентное) световое излучение. Другим примером возникновения порядка из хаоса является так называемый биологический морфогенез. Последний представляет собой образование пространственно-временных структур в совершенно однородной биологической среде, например правильных узоров на крыльях бабочек или регулярных полос на шкурах зебр и тигров.
Наконец, существуют системы, в которых порядок и хаос чередуются. Классическим примером этого случая являются химические реакции Белоусова-Жаботинского. В последних, как было отмечено выше, наблюдаются колебательные процессы, позволяющие называть подобные реакции «химическими часами».
В современной науке «порядок» и «хаос» — вполне определенные понятия. Насколько важно изучать хаос и переходы в это состояние из равновесия, показывает пример энергетической катастрофы в Нью-Йорке, когда в 1977 году из-за неожиданно возникшего дисбаланса между выработкой и потреблением электроэнергии энергетическая система города перешла в хаотическое состояние, ее поведение стало беспорядочным и непредсказуемым. Город погрузился во тьму, остановились фабрики, заводы, мелкие предприятия, поезда «подземки», застряли между этажами кабины лифтов, отключились сложные больничные устройства, поддерживавшие жизнь больным. Огромный город охватила паника, «физический» хаос породил хаос социальный. Он продолжался более суток.
Упорядоченность и хаос... Две крайности, наблюдаемые в реальном мире. С одной стороны, четкая, подчиняющаяся определенному порядку смена событий: движение планет, вращение Земли, появление комет, размеренный стук маятников, поезда, идущие по расписанию. С другой стороны, хаотическое метание шарика в рулетке, броуновское движение частиц под случайными ударами «соседей», беспорядочные вихри турбулентности, образующиеся при течении жидкости с достаточно большой скоростью. До недавних пор для любой отрасли техники, для любого производства было характерно стремление организовывать работу всех аппаратов и устройств в устойчивом статическом режиме. Порядок, равновесие, устойчивость всегда считались чуть ли не главными техническими достоинствами. Первыми преодолели этот психологический барьер строители: они стали закладывать в конструкции мостов, башен, высотных зданий элемент неопределенности — возможность совершать колебания.
Неупорядоченные процессы могут приводить к катастрофам. Например, на самолетах при неправильном выборе профилей крыльев или хвостовых оперений в полете может возникнуть сочетание крутильных и изгибных не упорядоченных колебаний, так называемый флаттер. На определенных скоростях флаттер приводит к разрушению самолета в целом. Конструктивные методы, препятствующие возникновению флаттера, позволила разработать теория неустойчивых колебаний, созданная выдающимся российским математиком — академиком М. В. Келдышем.
В природе протекает множество хаотических процессов, но далеко не всегда они воспринимаются как хаос. Поэтому наблюдаемый мир кажется нам вполне стабильным. Наше сознание, как правило, интегрирует, обобщает информацию, воспринимаемую органами чувств, и поэтому мы не видим мелких «дрожаний» — флуктуаций — в окружающей нас природе;) самолет надежно держится в воздушных турбулентных вихрях, хотя они неупорядоченно пульсируют; среди огромного количества хаотических помех в радиоэфире удается распознать нужную информацию, отделить по определенным статистическим закономерностям полезные сигналы от «шумов» и т. д.
Порядок в физических, экологических, экономических и любых других системах может быть двух видов: равновесный и неравновесный. При равновесном порядке система находится в равновесии со своим окружением; пара метры, которые ее характеризуют, одинаковы с теми, которые характеризуют окружающую среду. При неравновесном порядке эти параметры различны.
Одним из параметров, характеризующих физические системы, является температура. Никакое равновесие невозможно, если внутри рассматриваемой системы температура отличается от температуры окружающей среды. Ведь в этом случае возникают тепловые потоки, начинается перетекание тепла от горячих тел к холодным, и это продолжается до тех пор, пока температура не установится на едином для всех тел уровне (как в системе, так и в ее окружении). Другим важным параметром, характеризующим физические системы, является давление. При равновесном порядке давление внутри системы должно быть равно давлению на нее со стороны окружения. Экономические и социальные системы тоже описываются некоторыми обобщающими параметрами. Последние при равновесии принимают фиксированные значения.
На первый взгляд, равновесный порядок более «стабилен», чем неравновесный. В самой природе равновесного порядка заложено противодействие любым возмущениям состояния системы. В термодинамике это свойство систем называется принципом Ле-Шателье. Способность возвращаться к исходному состоянию — непременное свойство так называемых саморегулирующихся систем. Подобные системы встречаются в природе достаточно часто
Природа
неравновесного порядка другая. Она
имеет искусственное
В состоянии неравновесного порядка существует, например, человеческий организм: его энергетические потери компенсируются питанием и дыханием. Когда же жизненный цикл организма заканчивается, он переходит в состояние полного равновесия с окружающей средой. При этом устанавливается равновесный порядок.
При
решении практических задач ход физического
процесса, состояние системы и степень
ее организованности достаточно часто
изображают с помощью так называемого
фазового пространства. Координатами
в этом пространстве служат различные
параметры, характеризующие рассматриваемую
систему. Например, для описания механических
систем используют координаты и скорости
всех ее точек.
Координаты системы в фазовом пространстве также называются фазовыми, а семейство фазовых траекторий, изображающих движение системы, называется ее фазовым портретом.
Например,
если рассматриваются колебательные
движения корабля относительно продольной
оси (рис. ), то фазовый портрет
этого движения для случая незатухающих
колебаний может быть представлен
фазовыми траекториями, показанными на
рис. , а, а для случая затухающих
(реальных) колебаний — траекторией на
рис.
Рис.
Здесь использованы следующие обозначения: j — угол наклона корабля от вертикальной оси, w — угловая скорость корабля при его вращении вокруг продольной оси (j = w).
Взглянув на фазовый портрет физической системы, можно определить, в каком состоянии (равновесного или неравновесного порядка) она находится. Кстати, несмотря на разную физическую сущность этих двух видов порядка, их можно изобразить на одной и той же диаграмме в виде точек, линий или фигур. Можно также нарисовать диаграмму перехода из одного упорядоченного состояния в другое.
Но оказывается, что существует класс явлений, противоположных порядку как по физической сущности, так и по характеру изображения на фазовой диаграмме. Их образы размыты, нечетки, носят случайный или, как говорят, стохастический характер. Явления, порождающие такие образы, называются хаотическими. В частности, описанная выше катастрофа в Нью-Йорке, вызванная дисбалансом выработки и потребления энергии, — это переход энергетической системы города из равновесного состояния в хаотическое.
Информация о работе Самоорганизация процессов в геологии биологии и экологии