Шпаргалка по предмету "Концепции современного естествознания"

Автор работы: Пользователь скрыл имя, 11 Января 2013 в 11:50, шпаргалка

Описание работы

Работа содержит ответы на вопросы по предмету "Концепции современного естествознания".

Файлы: 1 файл

otvety_na_prevye_i_vtorye_voprosy.doc

— 430.50 Кб (Скачать файл)

Закон полного тока является одним из важнейших законов, устанавливающим неразрывную связь между электрическим током и магнитным полем. Любая магнитная линия обязательно охватывает электрический ток и, наоборот, электрический ток всегда окружен магнитным полем.

 

Магнитное поле— силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения, магнитная составляющая электромагнитного поля

Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами  электронов в атомах (и магнитными моментами других частиц, хотя в заметно меньшей степени) (постоянные магниты).

Энергия магнитного поля

Приращение плотности  энергии магнитного поля равно:

где:

H — напряжённость магнитного поля,

B — магнитная индукция

23. Геометрическая оптика и волновая теория света. Дисперсия, явления интерференции и дифракции, поляризация и их применение в технике и технологиях.

Представление о прямолинейных световых лучах  используется в инструментальной оптике для конструирования и расчета  оптических приборов. Расходящийся пучок лучей, выходящих из одной точки с помощью оптической системы (линзы, объектива, вогнутого зеркала) можно превратить в сходящийся. Точка пересечения этих сходящихся лучей будет действительным изображением соответствующей точки источника (предмета). Изображение протяженного предмета, формируемое оптической системой, представляет собой центральную проекцию предмета. Центр проекции находится в центре входного зрачка оптической системы. Физическая реализация геометрического проектирования с помощью световых лучей, т.е. формирование оптических изображений, широко используется в технике, в частности, при создании печатных микросхем.

Изготовление  печатных плат

Изображенные  на фотопленке элементы микросхемы проецируются на кристалл кремния, где получается подобное уменьшенное (с помощью системы линз) изображение микросхемы. Специальная обработка позволяет превратить это изображение в печатную микросхему.

Волновая  теория света, явления интерференции  и дифракции. Основоположником волновой теории является Х.Гюйгенс. Процесс распространения света он представлял не как поступательное движение, а как последовательный процесс передачи взаимодействия между корпускулами. Его сторонники считали, что свет распространяется в особой среде – «эфире», заполняющем все мировое пространство и свободно проникающем во все тела. Световое возбуждение от источника света передается посредством эфира во все стороны. Так возникли первые волновые представления о природе света. В развитии волновой теории света весьма важную роль сыграл принцип, сформулированный Гюйгенсом, а затем развитый французским физиком О.Френелем. Принцип Гюгенса-Френеля состоит в том, что каждая точка, до которой дошло световое возбуждение в свою очередь становится источником вторичных волн и передает их во все стороны соседним точкам. Наиболее наглядно волновые свойства света проявляются в явлениях интерференции и дифракции.

Интерференция света заключается в том, что при взаимном наложении двух волн происходит усиление или ослабление колебаний. Принцип интерференции впервые сформулировал в 1801 г. английский ученый Томас Юнг. Он поставил простой опыт: на экране кончиком булавки прокалывались два близко расположенных отверстия, которые освещались солнечным светом из небольшого отверстия в зашторенном окне. За экраном наблюдалась вместо двух ярких точек серия чередующихся темных и светлых колец, представляющая собой интерференционную картину. Необходимым условием интерференции является когерентность волн – согласованное протекание колебательных или волновых процессов.

Отклонение света  от прямолинейного распространения  называется дифракцией. На дифракции основаны многие оптические приборы. В частности, дифракция рентгеновских лучей используется во многих аппаратах различного назначения. Поляризация - показывает, что световые волны поперечны, т. е. колебания совершаются перпендикулярно к направлению распространения волны. Применение: дифракционную решётку применяют в спектральных приборах, также в качестве оптических датчиков линейных и угловых перемещений, поляризаторов и фильтров инфракрасного излучения, делителей пучков в интерферометрах и так называемых «антибликовых» очках. Интерференция используется в просветлении оптики, в голографии. На использовании интерференции света основано действия интерферометров и интерференционных спектроскопов.

24. Металлургические технологии.

Металлургический  процесс — совокупность методов добычи и производства металла. Металлургический процесс подразделяется по способу производства:

  • Металлургический процесс производства цветных металлов — Цветная металлургия;
  • Металлургический процесс производства чёрных металлов — Чёрная металлургия;

Металлургические  процессы подразделяются на три основных категории:

  • Гидрометаллургические — протекают в водных растворах при температуре до 300 градусов;
  • Пирометаллургические — протекают при температурах более 300 градусов;
  • Электрометаллургические — протекают в водных растворах или расплавах с протеканием электрического тока соответственно через раствор или расплав, при этом на катоде восстанавливается более чистый металл, чем используемый при изготовлении анода.

Основная цель металлургических процессов — получение металлов без примесей. В широком смысле к металлургическим процессам можно отнести всю цепочку преобразований от руды до товарного слитка металла:

  1. Добыча руды: шахтным (закрытым) или карьерным (открытым) способом.
  2. Дробление руды.
  3. Измельчение руды.
  4. Обогащение руды (гравитационным, флотационным или электромагнитным способом).
  5. Металлургическая переработка концентрата.

Рафинирование металла (для благородных металлов — аффинаж).

 

 

 

25. Классификация двигателей и принципы  их работы.

Двигатель, мотор — устройство, преобразующее какой-либо вид энергии в механическую. Этот термин используется с конца XIX века наряду со словом «мотор», которым с середины XX века чаще называют электродвигатели и двигатели внутреннего сгорания.

Двигатели подразделяют на первичные и вторичные. К первичным относят непосредственно преобразующие природные энергетические ресурсы в механическую работу, а ко вторичным — преобразующие энергию, выработанную или накопленную другими источниками.

К первичным  двигателям относятся ветряное колесо, использующее силу ветра, водяное колесо и гиревой механизм — их приводит в действие сила гравитации, тепловые двигатели — в них химическая энергия топлива или атомная энергия преобразуются в другие виды энергии. Ко вторичным двигателям относятся электродвигатель(электромотор), пневмодвигатель, гидродвигатель (гидромотор).Двигатели могут использовать следующие типы источников энергии: электрические; постоянного тока (электродвигатель постоянного тока);переменного тока (синхронные и асинхронные);электростатические;химические;ядерные;гравитационные;пневматические;гидравлические;лазерные.

26. Информационные технологии. Суперкомпьютер. Нейронные сети. Технологические возможности реализации высокой информационной плотности.

Информационные  технологии - широкий класс дисциплин и областей деятельности, относящихся к технологиям создания, управления и обработки данных, в том числе с применением вычислительной техники. В последнее время под информационными технологиями чаще всего понимают компьютерные технологии. В частности, ИТ имеют дело с использованием компьютеров и программного обеспечения для хранения, преобразования, защиты, обработки, передачи и получения информации.

Суперкомпьютер- вычислительная машина, значительно превосходящая по своим техническим параметрам большинство существующих компьютеров. Как правило, современные суперкомпьютеры представляют собой большое число высокопроизводительных серверных компьютеров, соединённых друг с другом локальной высокоскоростной магистралью для достижения максимальной производительности в рамках подхода распараллеливания вычислительной задачи. Нейронные сети - математические модели, а также их программные или аппаратные реализации, построенные по принципу организации и функционирования биологических нейронных сетей — сетей нервных клеток живого организма. Это понятие возникло при изучении процессов, протекающих в мозге, и при попытке смоделировать эти процессы. Первой такой попыткой были нейронные сети Маккалока и Питтса. Впоследствии, после разработки алгоритмов обучения, получаемые модели стали использовать в практических целях: в задачах прогнозирования, для распознавания образов, в задачах управления и др. ИНС представляют собой систему соединённых и взаимодействующих между собой простых процессоров. С точки зрения машинного обучения, нейронная сеть представляет собой частный случай методов распознавания образов и т. п. С математической точки зрения, обучение нейронных сетей — это многопараметрическая задача нелинейной оптимизации. С точки зрения кибернетики, нейронная сеть используется в задачах адаптивного управления и как алгоритмы для робототехники. С точки зрения развития вычислительной техники и программирования, нейронная сеть — способ решения проблемы эффективного параллелизма. Нейронные сети не программируются в привычном смысле этого слова, они обучаются. Возможность обучения — одно из главных преимуществ нейронных сетей перед традиционными алгоритмами. Технически обучение заключается в нахождении коэффициентов связей между нейронами. В процессе обучения нейронная сеть способна выявлять сложные зависимости между входными данными и выходными, а также выполнять обобщение.

Технологические возможности реализации высокой информационной плотности.

Современная технология позволяет изготавливать тонкопленочный элемент, ширина либо длина которого составляет примерно 1 мкм, что более  чем на порядок меньше размера  элемента серийно изготавливаемых  магниторезистивных преобразователей. Существенное уменьшение толщины магниторезистивного элемента даже с использованием самых перспективных технологических приемов сопряжено с нарушением однородности по толщине, что влечет за собой изменение и электрических, и магнитных свойств. Технология сегодняшнего дня позволяет изготавливать магниторезистивный элемент, минимальное поперечное сечение которого составляет 0,030 мкм2, что в принципе дает возможность воспроизвести информацию, записанную с поверхностной плотностью около 33 бит/мкм2. Такая плотность приблизительно на порядок меньше соответствующей предельной плотности, к которой допускает приблизиться реальный магнитный носитель - с кобальт-хромовым рабочим слоем. Если принять во внимание технологические возможности ближайшего будущего, когда линейный размер элемента уменьшится примерно на порядок, то магниторезистивный преобразователь с таким элементом позволит воспроизвести информацию, записанную с поверхностной плотностью, приближающейся к 400 бит/мкм2.

Это означает, что в обозримом будущем магниторезистивный преобразователь, опираясь на перспективную технологию, должен догнать магнитный носитель, и тогда их предельные характеристики плотности сравняются. При этом следует помнить, что предельные возможности и реальные устройства - это не одно и то же. В то же время без реальных возможностей не бывает и реальных устройств. Другое дело, что между ними, как правило, лежит непроторенный путь, который при недостаточно объективной оценке каких бы то ни было возможностей может оказаться безысходным. В данном случае правильный путь может выбрать практик-разработчик, каждое действие которого обосновано научным пониманием решаемой им проблемы.

27.Энергетическое  машиностроение. Станкостроение. Робототехника.

Энергетическое  машиностроение — отрасль производства и обслуживания промышленного оборудования для генерации и передачи электрической энергии. В отрасль входят предприятия по производству турбин, электрических генераторов, силовых трансформаторов для тепловых, атомных и гидроэлектростанций.

Станкостроение - ведущая отрасль машиностроения, создающая для всех отраслей народного хозяйства металлообрабатывающие и деревообрабатывающие станки, автоматические и полуавтоматические линии, комплексно-автоматического производства для изготовления машин, оборудования и изделий из металла и др. конструкционных материалов, кузнечно-прессовое, литейное и деревообрабатывающее оборудование. Робототе́хника  — прикладная наука, занимающаяся разработкой автоматизированных технических систем

Робототехника опирается на такие дисциплины как электроника, механика, программирование. Выделяют строительную, промышленную, бытовую, авиационную и экстремальную (военную, космическую, подводную) робототехнику.

 

 

28. Наночастицы. Нанотехнологии. Нанолитография. Наномедицина. Нанобиоэлектроника. Молекулярная самосборка. Наноматериалы.

Наночастица - это частица размером меньше 100 мкр. Современная тенденция к миниатюризации показала, что вещество может иметь совершенно новые свойства, если взять очень маленькую частицу этого вещества. Частицы размерами от 1 до 100 нанометров обычно называют «наночастицами». Так, например, оказалось, что наночастицы некоторых материалов имеют очень хорошие каталитические и адсорбционные свойства. Другие материалы показывают удивительные оптические свойства, например, сверхтонкие пленки органических материалов применяют для производства солнечных батарей. Такие батареи, хоть и обладают сравнительно низкой квантовой эффективностью, зато более дёшевы и могут быть механически гибкими. Удаётся добиться взаимодействия искусственных наночастиц с природными объектами наноразмеров — белками, нуклеиновыми кислотами и др. Тщательно очищенные наночастицы могут самовыстраиваться в определённые структуры. Такая структура содержит строго упорядоченные наночастицы и также зачастую проявляет необычные свойства. Нанообъекты  делятся на 3 основных класса: трёхмерные частицы, получаемые взрывом проводников, плазменным синтезом; двумерные объекты — плёнки, получаемые методами молекулярного наслаивания, CVD, ALD, методом ионного наслаивания; одномерные объекты — вискеры(эти объекты получаются методом молекулярного наслаивания, введением веществ в цилиндрические микропоры).На данный момент обширное применение получил только метод микролитографии, позволяющий получать на поверхности матриц плоские островковые объекты размером от 50 нм, применяется он в электронике; метод CVD и ALD в основном применяется для создания микронных плёнок. Прочие методы в основном используются в научных целях. В особенности следует отметить методы ионного и молекулярного наслаивания, поскольку с их помощью возможно создание реальных монослоёв. Нанотехноло́гия — междисциплинарная область фундаментальной и прикладной науки и техники, имеющая дело с совокупностью теоретического обоснования, практических методов исследования, анализа и синтеза, а также методов производства и применения продуктов с заданной атомной структурой путём контролируемого манипулирования отдельными атомами и молекулами.  Наноматериалы - материалы, разработанные на основе наночастиц с уникальными характеристиками, вытекающими из микроскопических размеров их составляющих. Углеродные нанотрубки — протяжённые цилиндрические структуры диаметром от одного до нескольких десятков нанометров и длиной до нескольких сантиметров, состоящие из одной или нескольких свёрнутых в трубку гексагональных графитовых плоскостей и обычно заканчивающиеся полусферической головкой. Фуллерены — молекулярные соединения, принадлежащие классу аллотропных  форм углерода. Графен — монослой атомов углерода, полученный в октябре 2004 года в Манчестерском университете. Графен можно использовать, как детектор молекул. Нанолитография наиболее важный метод создания устройств с нанометровыми размерами. Этот метод может использоваться для создания электронных схем, схем памяти с большой ёмкостью, сенсоров. Наномедицина — слежение, исправление, конструирование и контроль над биологическими системами человека на молекулярном уровне, используя наноустройства и наноструктуры. Нанобиоэлектроника) — раздел электроники и нанотехнологий, в которых используются биоматериалы и принципы переработки информации биологическими объектами в вычислительной технике для создания электронных устройств. Молекулярная самосборка - Создание произвольных последовательностей ДНК, которые могут быть использованы для создания требуемых белков или аминокислот.

Информация о работе Шпаргалка по предмету "Концепции современного естествознания"