Автор работы: Пользователь скрыл имя, 02 Декабря 2012 в 15:53, реферат
Мысль о том, что вещество построено из мельчайших частиц, высказывалась еще древнегреческими учеными. Они-то и назвали эти частицы атомами (от греческого слова, означающего «неделимый»). Древние греки предполагали, что атомы имеют форму правильных многогранников: куба («атомы земли»), тетраэдра («атомы огня»), октаэдра («атомы воздуха»), икосаэдра («атомы воды»). Поэтому и состоящий из них мир неисчерпаемо богат в своих свойствах и качествах. Цепляясь друг за друга крючками и крючочками, атомы образуют твердые тела. Атомы воды гладкие и скользкие, поэтому она растекается и не имеет формы. Атомы вязких веществ обладают заусеницами. Воздух – это пустота, в которой носятся отдельные редкие атомы.
Тем не менее, несмотря на все эти соображения, эксперимент убедительно говорил в пользу Резерфорда. Если бы физика целиком осталась на классических позициях, то ей вряд ли удалось бы достигнуть разрешения противоречий между опытом и «очевидными» физическими соображениями. Поэтому Нильс Бор утверждает: «Каким бы ни было изменение законов движения электронов, представляется необходимым ввести в эти законы величину, чуждую классической электродинамике, то есть постоянную Планка, или, как ее часто называют, элементарный квант действия. Благодаря введению этой величины вопрос об устойчивых конфигурациях электронов в атоме существенным образом изменяется, так как эта постоянная обладает такой размерностью и значением, что может в комбинации с зарядом и массой частиц определить длину требуемого порядка величины».
Постоянная Планка символизировала в теории элементарное количество действия, которое было сложным по структуре выражением, что видно уже из ее размерности. Элементарность действия имеет, поэтому другой статус (чисто количественный) по сравнению с элементарностью свойств и отношений, которая носила преимущественно качественный характер.
Действие (а вместе с ним и совпадающий с действием по размерности момент количества движения), если встать на точку зрения теории Планка, могло принимать только значения, кратные h. Это означало, что из непрерывного множества всех возможных с точки зрения классики орбит электронов – а были возможны орбиты любого радиуса – отбиралось дискретное множество орбит. Нильс Бор назвал их стационарными орбитами, соответствовавшими стационарным состояниям атома. Все возражения против модели Резерфорда, по словам Бора, можно устранить, если допустить:
Это и есть знаменитые постулаты Бора, вокруг которых вплоть до 1925 года концентрировалось развитие теоретической атомной физики.
В 1922 году Бор получил Нобелевскую премию по физике. В прочитанном им 11 декабря 1922 года в Стокгольме нобелевском докладе он развернул картину состояния атомной теории к этому времени. Одним из наиболее существенных успехов теории было нахождение ключа к периодической системе элементов, которая объяснялась наличием электронных оболочек, окружающих ядра атомов. Огромная физическая интуиция позволила Бору, еще не зная принципа Паули и спина электрона, наметить правильную картину построения периодической системы, исправить ошибку химиков в классификации редких земель и предсказать существование нового элемента, который и был открыт Костером и Хевеши, давшими ему название гафний.
Нильс Бор посвятил всю свою жизнь изучению свойств атома и его строения, 18 ноября 1962 года он неожиданно скончался.
2.2 Модель строение атома Бора
В 1913 г. датский физик Нильс Бор предложил свою теорию строения атома. Как и Резерфорд, он считал, что электроны двигаются вокруг ядра подобно планетам, движущимся вокруг Солнца. Однако к этому времени Дж.Франк и Г.Герц (1912 год) доказали дискретность энергии электрона в атоме и это позволило Бору положить в основу новой теории два необычных предположения (постулата):
Радиус орбиты r и скорость электрона v связаны квантовым соотношением Бора:
mrv = nћ, где m – масса электрона, n – номер орбиты, ћ – постоянная Планка (ћ = 1,05∙10-34 Дж∙с).
В модели Бора существовало строго определенное множество дозволенных орбит, выделенных квантовыми условиями. При этом каждая стационарная орбита была устойчивой по определению, и каждой стационарной орбите соответствовало определенное состояние атома. Вообще говоря, в любом стационарном состоянии атом мог находиться неограниченно долго, что ликвидировало единственность устойчивого состояния атома «самого по себе».
Среди бесконечного множества стационарных состояний только одно – основное состояние – было абсолютно устойчивым в рамках модели. Для нахождения атома в других состояниях, устойчивых лишь относительно, существовала некоторая вероятность спонтанного перехода атома в другое, менее возбужденное состояние.
Возможность таких спонтанных переходов была посторонней – в сторону уменьшения энергии состояния, уменьшения степени возбуждения атома. Спонтанно увеличивать свою энергию атом не мог. Это делало его гораздо менее «забывчивым».
Одно только основное состояние «не помнило» о прошлом поведении атома. Для других же стационарных состояний сам факт их существования напоминал о прошлом поведении атома, который мог начать существовать в этом состоянии, только либо, увеличив свою энергию под влиянием внешнего воздействия, либо уменьшить энергию в результате перехода из более возбужденного состояния – спонтанного или вынужденного. Находясь в любом состоянии, кроме основного, атом сохраняет в «снятом виде» отпечаток прошлого своего поведения.
Опираясь на свои допущения, Бор выводит далее новые закономерности для спектра водорода, принимавшиеся ранее просто как эмпирический факт: формулу Бальмера и закон Ридберга-Ритца. Очень скоро известные опыты Франка и Герца, по словам одного из авторов, «так убедительно доказали представления Бора о стационарных состояниях атома и о появлении излучения при переходе из одного состояния в другое с определением частоты из уравнения hn=E1-E2 (где h – постоянная Планка, n – частота колебания излучения), что трудно усомниться в их правильности». Бор, используя данное уравнение, рассчитал частоты линий спектра атома водорода, которые очень хорошо согласовывались с экспериментальными значениями, но было обнаружено также и то, что для других атомов эта теория не давала удовлетворительных результатов.
Вторая часть
работы Бора посвящена дальнейшему
исследованию вопросов, связанных со
строением атомов. В ней впервые
четко проводится мысль о том,
что «вследствие небольших
Бор послал свою статью Резерфорду. Резерфорд сразу понял революционный характер идей Бора и высказал критические замечания по самым фундаментальным пунктам теории Бора. Бор был вынужден поехать в Манчестер с переработанным вариантом статьи, чтобы договориться с Резерфордом. Поле длительных дискуссий его статья и еще две последующие статьи были опубликованы. Однако окончательный ответ на возражения Резерфорда был дан только с созданием квантовой механики, и Бор по существу всю жизнь разрабатывал теоретико-познавательные основы физики микромира, уточняя и развивая идеи, начало которым было положено его статьями 1913 года.
Сотрудничество Резерфорда и Бора обещало быть длительным и тесным. В мае 1914 года Резерфорд прислал Бору предложение занять в Манчестере освободившееся место. Бор с радостью принял это предложение и послал заявление Резерфорду. Работа Бора в Манчестере началась в тяжелых условиях первой мировой войны. Резерфорд с рядом сотрудником был в Австралии и возвратился оттуда в разгар военных действий. Мозли был призван в армию и убит. Ему удалось сделать замечательное открытие в области рентгеновских спектров и установить связь между частотами линий характеристического излучения и порядковым номером элемента. В декабре 1913 года была опубликована статья, в которой он писал: «Полученные результаты имеют большое значение для изучения структуры атома и полностью подтверждают точку зрения Резерфорда и Бора».
Бор, несмотря на все трудности военного времени, продолжал разрабатывать свою теорию. В 1915 году он опубликовал работы «О сериальном спектре водорода и строении атома» и «Спектр водорода и гелия», «О квантовой теории излучения в структуре атома». Он развил исследования, выполненные им в Манчестере в августе 1912 года, и опубликовал их под названием «Теория торможения заряженных частиц при их прохождении через вещество».
В декабре 1915 и
в январе 1916 года Арнольд Зоммерфельд
(1868–1951) развил теорию Бора, рассмотрев
движение электрона по эллиптическим
орбитам и обобщив правила квантования
Бора. Зоммерфельд дал также теорию тонкой
структуры спектральных линий, введя релятивистское
изменение массы со скоростью. В его расчеты
вошла безразмерная универсальная постоянная
тонкой структуры:
.
Бор получил статью Зоммерфельда в Манчестере в марте 1916 года и с восторгом отозвался о ней. Он писал, что «работа Зоммерфельда в значительной степени изменила современное понимание квантовой теории». Теория атома после открытия Зоммерфельда стала называться теорией Бора–Зоммерфельда.
По возвращении в Копенгаген Бор обнаружил пакет со статьей Эренфеста, содержащей теорию адиабатических вариантов. Эта теория давала критерий квантующихся величин и до создания квантовой механики была единственной руководящей нитью при применении правил квантования, предвосхищавшей многие выводы, следующие из статьи Бора.
К 1916 году теория Бора начала разрабатываться многими физиками. Была создана квантовая теория эффекта Зеемана и открытого в 1913 году Штарком (1874-1957) эффекта влияния электрического поля на спектры. «Область нашей работы, – писал Бор Резерфорду, – после получения статьи Эренфеста превратилась из страны с довольно малочисленным населением в донельзя перенаселенное государство».
Продолжая развивать свои идеи, Бор сформулировал принцип соответствия (1918), означавший шаг вперед в ответе на вопросы, поставленные Резерфордом. Чрезвычайно существенно, что благодаря Бору Копенгаген превратился в центр теоретической физики. К Бору примкнул молодой физик, ставший его ассистентом, Гендрик Антон Крамерс (1894-1952). Бор создал институт теоретической физики, в организации которого ему деятельную поддержку оказывал Резерфорд.
ЗАКЛЮЧЕНИЕ
Таким образом, открытия Резерфорда и Бора являются фундаментальными и имеют огромное значение для современной физики и для всего человечества. История науки учит, что всякий раз, когда человечество овладевает очередной ступенькой лестницы, ведущей вглубь вещества, это приводит к открытию нового, еще более мощного вида энергии. Горение и взрыв связаны с перестройкой молекул. Внутриатомные процессы сопровождаются выделением в миллионы раз большей энергии. Еще большее выделение энергии происходит на уровне элементарных частиц. Интересно предположить, что будет на следующих ступенях. Открытия Резерфорда и Бора доказали, что атом не есть неделимая частица, и дают возможность современной физике ответить на этот вопрос.
БИБЛИОГРАФИЧЕСКИ СПИСОК
1 Современная электронная энциклопедия. – http://ru.wikipedia.org
2 Бор Н.: «Три статьи о спектрах и строении атомов»: Москва, 1922. – 128с.
3 Резерфорд Э.: «Избранные научные труды»: Москва, 1971. – 154 с.
4 Химический сервер. – http://www.himhelp.ru
ПРИЛОЖЕНИЕ А
Рисунок А.1 – Эрнест Резерфорд
Рисунок А.2 – Модель строения атома Резерфорда
ПРИЛОЖЕНИЕ Б
Рисунок Б.1 – Нильс Бор
Рисунок Б.2 – Модель строения атома Бора