Автор работы: Пользователь скрыл имя, 08 Июня 2013 в 21:56, реферат
Естествознание сейчас находится в начале нового, необычайно интересного этапа своего развития. Он замечателен прежде всего тем, что наука о микромире — физика элементарных частиц — и наука о Вселенной — космология — становятся единой наукой о фундаментальных свойствах окружающего нас мира. Различными методами они отвечают на одни и те же вопросы: какой материей наполнена Вселенная сегодня? Какова была её эволюция в прошлом? Какие процессы, происходившие между элементарными частицами в ранней Вселенной, привели в конечном итоге к её современному состоянию?
Введение
Темная материя
Темная энергия
Заключение
Список используемой литературы
ФГБОУ ВПО «ВЕЛИКОЛУКСКАЯ ГОСУДАРСТВЕННАЯ
СЕЛЬСКОХОЗЯЙСТВЕННАЯ АКАДЕМИЯ»
Реферат
по дисциплине «Концепция
Содержание
Естествознание сейчас находится в начале нового, необычайно интересного этапа своего развития. Он замечателен прежде всего тем, что наука о микромире — физика элементарных частиц — и наука о Вселенной — космология — становятся единой наукой о фундаментальных свойствах окружающего нас мира. Различными методами они отвечают на одни и те же вопросы: какой материей наполнена Вселенная сегодня? Какова была её эволюция в прошлом? Какие процессы, происходившие между элементарными частицами в ранней Вселенной, привели в конечном итоге к её современному состоянию? Если сравнительно недавно обсуждение такого рода вопросов останавливалось на уровне гипотез, то сегодня имеются многочисленные экспериментальные и наблюдательные данные, позволяющие получать количественные (!) ответы на эти вопросы. Это — еще одна особенность нынешнего этапа: космология за последние 10–15 лет стала точной наукой. Уже сегодня данные наблюдательной космологии имеют высокую точность; еще больше информации о современной и ранней Вселенной будет получено в ближайшие годы.
Полученные в последнее время космологические данные требуют кардинального дополнения современных представлений о структуре материи и о фундаментальных взаимодействиях элементарных частиц. Сегодня мы знаем всё или почти всё о тех «кирпичиках», их которых состоит обычное вещество — атомы, атомные ядра, входящие в состав ядер протоны и нейтроны, — и о том, как взаимодействуют между собой эти «кирпичики» на расстояниях вплоть до 1/1000 размера атомного ядра (рис. 1). Это знание получено в результате многолетних экспериментальных исследований, в основном на ускорителях, и теоретического осмысления этих экспериментов. Космологические же данные свидетельствуют о существовании новых типов частиц, ещё не открытых в земных условиях и составляющих «темную материю» во Вселенной. Скорее всего, речь идет о целом пласте новых явлений в физике микромира, и вполне возможно, что этот пласт явлений будет открыт в земных лабораториях в недалеком будущем
Темная материя
Темная материя сродни обычному веществу в том смысле, что она способна собираться в сгустки (размером, скажем, с галактику или скопление галактик) и участвует в гравитационных взаимодействиях так же, как обычное вещество. Скорее всего, она состоит из новых, не открытых еще в земных условиях частиц.
Помимо космологических данных, в пользу существования темной материи служат измерения гравитационного поля в скоплениях галактик и в галактиках. Имеется несколько способов измерения гравитационного поля в скоплениях галактик, один из которых — гравитационное линзирование, проиллюстрированное на рис. 6.
Гравитационное поле скопления искривляет лучи света, испущенные галактикой, находящейся за скоплением, т. е. гравитационное поле действует как линза. При этом иногда появляются несколько образов этой удаленной галактики; на левой половине рис. 6 они имеют голубой цвет. Искривление света зависит от распределения массы в скоплении, независимо от того, какие частицы эту массу создают. Восстановленное таким образом распределение массы показано на правой половине рис. 6 голубым цветом; видно, что оно сильно отличается от распределения светящегося вещества. Измеренные подобным образом массы скоплений галактик согласуются с тем, что темная материя вкладывает около 25% в полную плотность энергии во Вселенной. Напомним, что это же число получается из сравнения теории образования структур (галактик, скоплений) с наблюдениями.
Темная материя имеется и в галактиках. Это опять-таки следует из измерений гравитационного поля, теперь уже в галактиках и их окрестностях. Чем сильнее гравитационное поле, тем быстрее вращаются вокруг галактики звезды и облака газа, так что измерения скоростей вращения в зависимости от расстояния до центра галактики позволяют восстановить распределение массы в ней. Это проиллюстрировано на рис. 7: по мере удаления от центра галактики скорости обращения не уменьшаются, что говорит о том, что в галактике, в том числе вдалеке от её светящейся части, имеется несветящаяся, темная материя. В нашей Галактике в окрестности Солнца масса темной материи примерно равна массе обычного вещества.
Что представляют из себя частицы темной материи? Ясно, что эти частицы не должны распадаться на другие, более легкие частицы, иначе бы они распались за время существования Вселенной. Сам этот факт свидетельствует о том, что в природе действует новый, не открытый пока закон сохранения, запрещающий этим частицам распадаться. Аналогия здесь с законом сохранения электрического заряда: электрон — это легчайшая частица с электрическим зарядом, и именно поэтому он не распадается на более легкие частицы (например, нейтрино и фотоны). Далее, частицы темной материи чрезвычайно слабо взаимодействуют с нашим веществом, иначе они были бы уже обнаружены в земных экспериментах. Дальше начинается область гипотез. Наиболее правдоподобной (но далеко не единственной!) представляется гипотеза о том, что частицы темной материи в 100–1000 раз тяжелее протона, и что их взаимодействие с обычным веществом по интенсивности сравнимо с взаимодействием нейтрино. Именно в рамках этой гипотезы современная плотность темной материи находит простое объяснение: частицы темной материи интенсивно рождались и аннигилировали в очень ранней Вселенной при сверхвысоких температурах (порядка 1015 градусов), и часть их дожила до наших дней. При указанных параметрах этих частиц их современное количество во Вселенной получается как раз такое, какое нужно.
Можно ли ожидать открытия частиц темной материи в недалеком будущем в земных условиях? Поскольку мы сегодня не знаем природу этих частиц, ответить на этот вопрос вполне однозначно нельзя. Тем не менее, перспектива представляется весьма оптимистической.
Имеется несколько путей поиска частиц темной материи. Один из них связан с экспериментами на будущих ускорителях высокой энергии — коллайдерах. Если частицы темной материи действительно тяжелее протона в 100–1000 раз, то они будут рождаться в столкновениях обычных частиц, разогнанных на коллайдерах до высоких энергий (энергий, достигнутых на существующих коллайдерах, для этого не хватает). Ближайшие перспективы здесь связаны со строящимся в международном центре ЦЕРН под Женевой Большим адронным коллайдером (LHC), на котором будут получены встречные пучки протонов с энергией 7×7 Тераэлектронвольт. Нужно сказать, что согласно популярным сегодня гипотезам, частицы темной материи — это лишь один представитель нового семейства элементарных частиц, так что наряду с открытием частиц темной материи можно надеяться на обнаружение на ускорителях целого класса новых частиц и новых взаимодействий. Космология подсказывает, что известными сегодня «кирпичиками» мир элементарных частиц далеко не исчерпывается!
Другой путь состоит в регистрации частиц темной материи, которые летают вокруг нас. Их отнюдь не мало: при массе, равной 1000 масс протона, этих частиц здесь и сейчас должно быть 1000 штук в кубическом метре. Проблема в том, что они крайне слабо взаимодействуют с обычными частицами, вещество для них прозрачно. Тем не менее, частицы темной материи изредка сталкиваются с атомными ядрами, и эти столкновения можно надеяться зарегистрировать. Поиск в этом направлении ведется с помощью целого ряда высокочувствительных детекторов, помещенных глубоко под землей, где резко снижен фон от космических лучей.
Наконец, еще один путь связан с регистрацией продуктов аннигиляции частиц темной материи между собой. Эти частицы должны скапливаться в центре Земли и в центре Солнца (вещество для них практически прозрачно, и они способны проваливаться внутрь Земли или Солнца). Там они аннигилируют друг с другом, и при этом образуются другие частицы, в том числе нейтрино. Эти нейтрино свободно проходят сквозь толщу Земли или Солнца, и могут быть зарегистрированы специальными установками — нейтринными телескопами. Один из таких нейтринных телескопов расположен в глубине озера Байкал (НТ-200, рис. 8), другой (AMANDA) — глубоко во льду на Южном полюсе.
Как показано на рис. 9, нейтрино, приходящее, например, из центра Солнца, может с малой вероятностью испытать взаимодействие в воде, в результате чего образуется заряженная частица (мюон), свет от которой и регистрируется. Поскольку взаимодействие нейтрино с веществом очень слабое, вероятность такого события мала, и требуются детекторы очень большого объема. Сейчас на Южном полюсе началось сооружение детектора объемом 1 кубический километр.
Имеются и другие подходы к поиску частиц темной материи, например, поиск продуктов их аннигиляции в центральной области нашей Галактики. Какой из всех этих путей первым приведет к успеху, покажет время, но в любом случае открытие этих новых частиц и изучение их свойств станет важнейшим научным достижением. Эти частицы расскажут нам о свойствах Вселенной через 10–9 с (одна миллиардная секунды!) после Большого Взрыва, когда температура Вселенной составляла 1015градусов, и частицы темной материи интенсивно взаимодействовали с космической плазмой.
Темная энергия
Темная энергия — гораздо более странная субстанция, чем темная материя. Начать с того, что она не собирается в сгустки, а равномерно «разлита» во Вселенной. В галактиках и скоплениях галактик её столько же, сколько вне их. Самое необычное то, что темная энергия в определенном смысле испытывает антигравитацию. Мы уже говорили, что современными астрономическими методами можно не только измерить нынешний темп расширения Вселенной, но и определить, как он изменялся со временем. Так вот, астрономические наблюдения6свидетельствуют о том, что сегодня (и в недалеком прошлом) Вселенная расширяется с ускорением: темп расширения растет со временем. В этом смысле и можно говорить об антигравитации: обычное гравитационное притяжение замедляло бы разбегание галактик, а в нашей Вселенной, получается, всё наоборот.
Такая картина, вообще говоря, не противоречит общей теории относительности, однако для этого темная энергия должна обладать специальным свойством — отрицательным давлением. Это резко отличает её от обычных форм материи. Не будет преувеличением сказать, что природа темной энергии — это главная загадка фундаментальной физики XXI века.
Один из кандидатов на роль темной энергии — вакуум. Плотность энергиии вакуума не изменяется при расширении Вселенной, а это и означает отрицательное давление вакуума7. Другой кандидат — новое сверхслабое поле, пронизывающее всю Вселенную; для него употребляют термин «квинтэссенция». Есть и другие кандидаты, но в любом случае темная энергия представляет собой что-то совершенно необычное.
Другой путь объяснения ускоренного расширения Вселенной состоит в том, чтобы предположить, что сами законы гравитации видоизменяются на космологических расстояниях и космологических временах. Такая гипотеза далеко не безобидна: попытки обобщения общей теории относительности в этом направлении сталкиваются с серьезными трудностями.
По-видимому, если такое обобщение вообще возможно, то оно будет связано с представлением о существовании дополнительных размерностей пространства, помимо тех трех измерений, которые мы воспринимаем в повседневном опыте.К сожалению, сейчас не видно путей прямого экспериментального исследования темной энергии в земных условиях. Это, конечно, не означает, что в будущем не может появиться новых блестящих идей в этом направлении, но сегодня надежды на прояснение природы темной энергии (или, более широко, причины ускоренного расширения Вселенной) связаны исключительно с астрономическими наблюдениями и с получением новых, более точных космологических данных. Нам предстоит узнать в деталях, как именно расширялась Вселенная на относительно позднем этапе её эволюции, и это, надо надеяться, позволит сделать выбор между различными гипотезами.
Как часто бывает в науке, впечатляющие
успехи физики частиц и космологии
поставили неожиданные и
Список используемой литературы
Информация о работе Темная материя и темная энергия во Вселенной