Автор работы: Пользователь скрыл имя, 27 Апреля 2013 в 21:22, контрольная работа
Проблема вирусов в наше время очень актуальна. Она привлекает внимание всё большего числа учёных. С каждым днём появляется всё больше вирусов. Когда вирусы впервые были открыты, никто и не подозревал, что они будут так опасны и им посвятят целую науку. Сейчас тысячи людей заражены такими опасными вирусными заболеваниями как СПИД, рак, но и не только же люди болеют вирусными инфекциями, а и растения,
Введение
1 История вирусологии
2 Периоды развития вирусологии
4 Роль вирусов в эволюции
«Три вируса — три домена» В 2006 году была опубликована очень любопытная работа французского ученого Патрика Фортерра. Фортерр начал обдумывать роль вирусов в эволюции уже с 80-х годов прошлого века. В то время он занимался изучением бактериофага Т4 (вируса, заражающего бактерии). Ученый обратил внимание, что ДНК-полимераза Т4 совершенно не похожа по структуре на ДНК-полимеразы живых организмов. Ему показалось, что это явно противоречит принятым в то время представлениям о вирусах как о выродившихся клетках, и с тех пор он борется за признание вирусов полноправными, а может быть, и ведущими участниками первых этапов возникновения жизни. Фортерр обнаружил, что если сравнение аппаратов синтеза белка бактерий, архей и эукариот дает более или менее однозначные сведения об эволюции трех доменов и степени их родства, то воссоздать эволюцию, сравнивая гены, отвечающие за синтез ДНК, удается с трудом. В первом случае, какой бы ген вы ни выбрали для сравнения, вы получите один и тот же результат, а вот во втором результат будет зависеть от того, что за ген вы рассматриваете. Чтобы объяснить это противоречие, наличие которого, впрочем, ставят под сомнение другие исследователи, Фортерр предложил гипотезу «трех вирусов - трех доменов». Ученый высказал довольно странную, но занятную идею, что ДНК могла впервые появиться у вирусов. Концепция РНК-мира гласит, что первые самореплицирующиеся системы возникли на основе РНК. Но каким образом мог произойти переход от РНК к ДНК, не очень понятно. В отличие от РНК, ДНК не обладает способностью к саморепликации. Конечно, у ДНК есть несомненные преимущества: во-первых, молекула ДНК химически более стабильна, а во-вторых, она состоит из двух комплементарных цепей, что позволяет в случае повреждения одной цепи восстановить информацию по другой. Таким образом, пусть и с проигрышем в независимости, ДНК предоставляет организму возможность иметь больший геном. И здесь кроется парадокс: ДНК не дает немедленного преимущества. Да, в отдаленной перспективе постепенное наращивание генома несомненно выгодно, но как оно могло быть поддержано отбором вначале? Фортерр считает, что вот тут самое время вспомнить о вирусах. Итак, по мнению Фортерра, в «маленьком теплом пруду» плавали РНК-содержащие клетки, и клетки эти заражались РНК-содержащими вирусами. Чтобы защитить себя, РНК-клетки могли выработать некий способ разрушения чужого генетического материала, а такие способы, заметим, имеются и у современных бактерий (система рестрикции), и у современных эукариот (система РНК-интерференции). Чем могли ответить вирусы в этой гонке вооружений? Может быть, они попытались бы как-то модифицировать свой генетический материал, чтобы расстроить планы противника? Что, если они модифицировали РНК в двуцепочечную ДНК-молекулу, в которой нуклеотидные основания скрыты в глубине двойной спирали? В такой ситуации переход к ДНК мог бы стать для вирусов вовсе не отдаленным, а немедленным преимуществом. Есть ли хоть какое-нибудь косвенное подтверждение этой идеи? В принципе да. У некоторых ДНК-содержащих вирусов имеются собственные ферменты, необходимые для получения ДНК на основе РНК (рибонуклеотид-редуктаза и тимидилат-синтаза), возможно, уцелевшие с тех времен. Фортерр предполагает, что вначале появилась ДНК, содержащая урацил вместо тимина. Напомним, что и ДНК, и РНК построены из четырех видов азотистых оснований, три из которых (аденин, гуанин и цитозин) совпадают у ДНК и РНК, а одно отличается: молекула РНК содержит урацил, а ДНК - тимин. Известно только одно исключение из этого строгого правила - «урациловая» ДНК имеет вирус PBS1, заражающий сенную палочку. Фортерр интерпретирует это исключение как доказательство того, что ДНК, содержащая урацил, могла существовать на Земле, пока не была вытеснена содержащей тимин. А дальше могло случиться так, что однажды ДНК-содержащий вирус «застрял» в РНК-клетке, потеряв гены, необходимые для построения белковой оболочки. Вот на этом этапе РНК-гены хозяина могли начать постепенно включаться в ДНК вируса. Со временем РНК-хромосома таяла, а ДНК-хромосома росла, пока в конце концов все гены клетки не перешли на вирусную хромосому. Как бы выглядела такая клетка? Гены, отвечающие за трансляцию, остались бы у нее от РНК-клетки, а гены, отвечающие за синтез ДНК, — от вируса. Фортерр утверждает, что такое событие произошло в эволюции трижды: три вируса стали родоначальниками трех доменов живого. Таким образом, предлагаемая Фортерром теория объясняет, кому было выгодно появление ДНК, как получилось, что молекулярная эволюция трансляционного аппарата происходила иначе, чем эволюция системы синтеза ДНК, и как именно произошли все три домена. Разумеется, у этой теории есть недостатки. Например, Дэвид Пенни, профессор теоретической биологии из Новой Зеландии, указывает на то, что гипотетическая РНК-клетка должна быть устроена гораздо сложнее, чем это позволяет РНК как носитель генетической информации. Пенни не отрицает значительного влияния вирусов на эволюцию, но считает, что клетки осуществили переход на ДНК самостоятельно. Евгений Кунин, сотрудник Национального центра биотехнологической информации США, соглашается с Фортерром в том, что вирусы вышли непосредственно из РНК-мира и могли первыми начать использовать ДНК, но его видение того, как это могло произойти, существенно иное.
Маленькие теплые лужицы. Итак, вернемся во времена РНК-мира. Предположим, что мир этот был сосредоточен не в одном «маленьком теплом пруду», а во множестве небольших «луж», организованных наподобие сот. В таких условиях, как считает Кунин, вдоклеточную эпоху образовались удивительные вирусоподобные генетические системы. Ученый отталкивается от того, что РНК-мир был поделен на отсеки, изолированные друг от друга таким образом, что молекулы РНК могли свободно рекомбинировать между собой в пределах одного отсека, но не могли смешиваться с молекулами РНК соседнего отсека. Рекомбинация и обмен генами происходили очень интенсивно. С одной стороны, РНК легче вступает в такие реакции, с другой стороны, нет никаких пространственных барьеров для рекомбинации молекул в пределах отсека. Эволюция шла значительно быстрее, пока не произошел переход к ДНК и не образовались замкнутые клетки. Возникающие генетические системы использовали неорганические соединения из раствора и продукты деятельности других генетических систем. Сначала на них действовал индивидуальный отбор: выживали те РНК, которые могли, например, обеспечить собственное воспроизведение. Но со временем индивидуальный отбор должен был смениться своего рода популяционным отбором. Наличие в одном и том же отсеке одновременно молекул, способных эффективно копировать РНК, кодировать полезные белки и управлять синтезом предшественников, необходимых для построения новых молекул, давало выигрыш всему населению отсека. Произошло образование коммуны. И в такой коммуне неизбежно должны были появиться и тунеядцы: генетические элементы, которые паразитируют на других, ничего не предлагая взамен. Вот вам и настоящий вирус без всякого пока намека на клетку! Тунеядцы могли быть очень опасны для коммуны. Если бы паразитический генетический элемент оказался достаточно бойким, он извел бы все ресурсы отсека на свою репликацию и тем самым прервал бы существование всех генетических систем своего отсека. После чего единственным способом выжить для паразита могло быть только заражение соседнего отсека. Скорее всего, начинающиеся подобным образом эпидемии должны были уничтожать «жизнь» в большинстве отсеков. Выжить в таких условиях могли или те отсеки, в которых паразиты вели себя скромнее, или те, в которых появилась бы система защиты от чужеродных генетических элементов. Вспомним идею Фортерра о том, что переход к ДНК в качестве носителя информации был способом защиты паразита от хозяина, — ее можно применить и к этой модели. Только в этом случае хозяином будет не клетка, а полезные члены коммуны. В разных отсеках могли возникать самые разные паразитические генетические системы: одни могли быть полностью зависимыми от других участников коммуны, другие, возможно, приобретали собственные гены, повышающие эффективность размножения и распространения. Если тогда же появился белок оболочки, который давал паразиту явное преимущество, делая генетический материал более защищенным и повышая шанс заразить соседний отсек, то он мог быть позаимствован всеми существовавшими паразитами. Теперь, окруженные оболочкой, они уже совсем стали напоминать вирусы. Возможно, именно поэтому большинство современных вирусов имеют общий мотив в строении белка оболочки. Модель, предложенная Куниным, объясняет и удивительное разнообразие вирусов — они могут происходить от разных типов паразитов, живших в то время.
В самое ядро. Поговорим еще об одном предполагаемом
вмешательстве вирусов в эволюцию — теории
вирусного происхождения ядра эукариот
(вирусного эукариогенеза). Из трех доменов,
о которых шла речь выше, только у эукариот
ДНК находится в ядре. Два других домена
относятся к прокариотам, то есть безъядерным
организмам, чья ДНК располагается непосредственно
в цитоплазме. Наличие ядра — далеко не
единственное отличие эукариот от прокариот.
В клетках эукариот имеются и другие обособленные
структуры, каждая из которых выполняет
определенную функцию: например, в митохондриях
происходит синтез АТФ (аденозинтрифосфата),
в эндоплазматическом ретикулуме - синтез
белков, в хлоропластах растительной клетки
— фотосинтез. ДНК эукариот представлена
линейной, а не кольцевой молекулой, как
в случае прокариот. Кроме того, эукариоты
обладают внутренним скелетом, способны
к фагоцитозу (захвату и перевариванию
пищевых частиц из среды), митозу и мейозу
— особым типам клеточного деления, и
это далеко не все различия, которые можно
перечислить. Разумеется, ученым любопытно,
каким образом возникло каждое из них.
Было предложено множество гипотез о том,
откуда могли произойти компоненты эукариотической
клетки, наиболее известная из которых
— теория эндосимбиоза. Теорию эндосимбиоза
сформулировал в 1905 году русский ботаник
Константин Мережковский. Опираясь на
опыты Андреаса Шимпера, заметившего,
что деление хлоропластов очень похоже
на деление свободноживущих цианобактерий,
Мережковский предположил, что растения
произошли в результате симбиоза двух
организмов. В 20-х годах была высказана
подобная же гипотеза в отношении митохондрий.
Тогда научная общественность восприняла
обе эти идеи без энтузиазма. Но когда
в 60-х годах было открыто, что хлоропласты
и митохондрии содержат собственную ДНК,
теория эндосимбиоза пережила второе
рождение. Во многом это произошло благодаря
труду и настойчивости американской исследовательницы
Линн Маргулис, которая развивала представления
о симбиотическом происхождении органелл,
несмотря на жесткую критику со стороны
других ученых (одна из ее статей была
пятнадцать раз отвергнута редакциями
научных журналов). Настоящее признание
теория эндосимбиоза получила в 80-х годах
после того, как было установлено, что
геном митохондрий устроен подобно прокариотическому,
а не эукариотическому. Это убедило большинство
ученых, и сегодня теория эндосимбиоза
является общепризнанной.
Этот пример показывает, сколько времени
и усилий требуется для признания гипотезы,
описывающей события, которые происходили
миллиарды лет назад. Ведь в этом случае
трудно предъявить какое-нибудь неоспоримое
доказательство. Должны были пройти десятки
лет, прежде чем появились методы, с помощью
которых теориясимбиогенеза получила
убедительное, но, заметим, опять же косвенное
подтверждение.
В вопросах происхождения клеточного
ядра ученым пока не удалось достигнуть
согласия. Наиболее популярна идея симбиоза
двух клеток, архей и бактерий, но раз уж
мы взялись за изучение возможной роли
вирусов в истории, подробнее остановимся
на появившейся в последнее десятилетие
теории вирусного эукариогенеза. В 2001
году с разницей в несколько месяцев были
опубликованы две статьи, посвященные
рассмотрению теории вирусного происхождения
клеточного ядра. Масахару Такемура из
университета Нагоя и Филип Джон Ливингстон
Белл из университета Макуори заметили,
что крупные ДНК-содержащие вирусы, такие,
как, например, вирус оспы, имеют много
общего с ядром клетки. Вирусы такого типа
окружены мембраной, их ДНК имеет линейную
форму, характерную также для ядерной
ДНК (в митохондриях и хлоропластах ДНК
кольцевая). Молекулы РНК, использующиеся
в качестве матрицы для синтеза белка
(матричные РНК, мРНК), как у оспоподобных
вирусов, так и у клетки определенным образом
модифицированы с тем, чтобы повысить
их стабильность и эффективность синтеза
белка.
В предлагаемой теории древний вирус,
напоминавший современный вирус оспы,
заразил древнюю безъядерную клетку. Допустим,
этот вирус обладал способностью какое-то
время существовать внутри клетки, не
убивая ее. При этом клетки продолжают
жить и делиться, передавая вирус всему
потомству. Вирус мог в какой-то момент
полностью осесть в клетке, прекратить
попытки выбраться наружу, уничтожив ее.
Такой оседлый вирус действительно чем-то
сходен с ядром. И если вирусные мРНК были
лучшими матрицами, то клетке было бы выгодно
постепенно перевести все свои гены на
вирусную основу. Белл также полагает,
что эукариоты обязаны вирусам и появлением
митоза и мейоза, возникшим как способ
контролировать число копий вируса в клетке
на постоянном уровне. Эту идею развивает
французский вирусолог Жан-Мишель Клавери,
который считает, что вирусы дали начало
ядру, а ядро — вирусам. Клавери полагает,
что, пока память о вирусном происхождении
ядер еще не была утрачена, возможно, ядра
могли покидать клетку и возвращаться
к свободной жизни, унося с собой часть
клеточных генов, которые уже могли перейти
на вирусную хромосому. Каждое такое событие
давало начало новой группе вирусов и
способствовало тасованию клеточных и
вирусных генов. Как и все вирусологи,
упомянутые в этой статье, Клавери уверен
в том, что роль вирусов в эволюции недооценена:
«Биологам пора перестать смотреть на
вирусы как на случайные скопления генов.
Мы задолжали
Говоря о гипотезе Патрика Фортерра, Карл
Вёзе, один из ведущих исследователей
в данной области, замечает, что, возможно,
не так и важно, прав Фортерр или нет, —
важно, что он двигается в верном направлении.
Несомненно, накопление сведений о геномах
вирусов и их тщательный анализ внесет
коррективы в существующие сегодня модели,
но сама идея рассматривать вирусы в качестве
активных участников истории возникновения
жизни кажется правильной. Хотим мы того
или нет, но вирусы существуют и, вероятно,
будут существовать столько же, сколько
жизнь на Земле, поэтому игнорировать
их присутствие невозможно ни на каком
этапе эволюции.