Автор работы: Пользователь скрыл имя, 18 Октября 2013 в 17:34, контрольная работа
В данной контрольной работе рассмотрим нашу вселенную. Для полноты изучения решим следующие задачи:
- Узнаем что такое вселенная
- Понятие галактики. Строение галактики
- Метагалактика
Введение 3
1. Вселенная 5
2. Галактики 11
3. Метагалактика 15
Заключение 20
Список литературы 23
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
ФГБОУ ВПО «Уральский государственный экономический университет»
Центр дистанционного образования
Контрольная работа
по дисциплине: «Концепции современного естествознания»
тема 33 «Вселенная, мегагалактика, галактики»
(раздел: Пространство, время, движение)
Исполнитель: студент
Направление__________
Профиль
группа
Ф.И.О
2013
Содержание
Введение
1. Вселенная
2. Галактики
3. Метагалактика
Заключение
Список литературы
Введение
В одном из выступлений А. Эйнштейн сказал (в 1929 г.): «Если говорить честно, мы хотим не только узнать, как устроена, ... но и по возможности достичь цели утопической и дерзкой на вид - понять, почему природа является именно такой... В этом состоит прометеевский элемент научного творчества».
Многие ранние традиции, Еврейская, Христианская и Исламская религии, считали, что Вселенная создалась довольно недавно. Например, епископ Ушер вычислил дату в четыре тысячи четыреста лет для создания Вселенной, прибавляя возраст людей в Ветхом Завете. Фактически, дата библейского создания не так далека от даты конца последнего Ледникового периода, когда появился первый современный человек.
С другой стороны, некоторые люди, например, греческий философ Аристотель, Декарт, Ньютон, Галилей не признавали идею о том, что Вселенная имела начало. Они чувствовали, что это могло быть. Но они предпочли верить в то, что Вселенная, существовала, и должна была существовать всегда, то есть вечно и бесконечно.
На самом деле, в 1781 философ Иммануил Кант написал необычную и очень неясную работу «Критика Чистого Разума». В ней он привел одинаково правильные доводы, оба для веры, что Вселенная имела начало, и что его не было. Как говорит название работы, выводы были основаны просто на причине. Другими словами, не были взяты в счет наблюдения о Вселенной. В конце концов, в неменяющейся Вселенной было ли что наблюдать?
Никто в семнадцатых, восемнадцатых, девятнадцатых или ранних двадцатых столетиях, не считал, что Вселенная могла развиваться со временем. Ньютон и Эйнштейн оба пропустили шанс предсказания, что Вселенная могла бы или сокращаться, или расширяться. Нельзя действительно ставить это против Ньютона из-за того, что он жил двести пятьдесят лет перед открытием расширения Вселенной. Но Эйнштейн должен был знать это лучше. Когда он сформулировал теорию относительности, чтобы проверить теорию Ньютона с его собственной специальной теорией относительности, он добавил так называемую «космическую константу». Она представляла собой отталкивающий гравитационный эффект, который мог бы балансировать эффект притяжения материала во Вселенной. Таким образом, было возможно иметь статическую модель Вселенной.
Эйнштейн позже сказал: «Космическая константа была величайшей ошибкой моей жизни». Это произошло после наблюдений отдаленных галактик Эдвином Хабблом в 1920 году и показало, что они перемещаются далеко от нас, со скоростями, которые были приблизительно пропорциональными их расстоянию от нас. Другими словами, Вселенная не статическая, как прежде было принято думать: она расширяется. Расстояние между галактиками возрастает со временем.
В данной контрольной работе рассмотрим нашу вселенную. Для полноты изучения решим следующие задачи:
Вселенная – это весь существующий материальный мир, безграничный во времени и пространстве и бесконечно разнообразный по формам, которые принимает материя в процессе своего развития. Часть Вселенной, охваченная астрономическими наблюдениями, называется Метагалактикой, или нашей Вселенной. Размеры метагалактики очень велики: радиус космологического горизонта составляет 15-20 млрд. световых лет.
Космология – один из тех разделов естествознания, которые всегда находятся на стыке наук. Строение и эволюция Вселенной изучаются космологией. Космология использует достижения и методы физики, математики, философии. Предмет космологии – весь окружающий нас мегамир, вся «большая Вселенная», и задача состоит в описании наиболее общих свойств, строения и эволюции вселенной.
Современная астрономия не только открыла грандиозный мир галактик, но и обнаружила уникальные явления: расширение Метагалактики, космическую распространенность химических элементов, реликтовое излучение, свидетельствующие о том, что Вселенная непрерывно развивается.
С эволюцией структуры Вселенной
связано возникновение
В результате гравитационной нестабильности в разных зонах образовавшихся галактик могут сформироваться плотные «протозвездные образования» с массами, близкими к массе Солнца. Начавшийся процесс сжатия будет ускоряться под влиянием собственного поля тяготения. Процесс этот сопровождает свободное падение частиц облака к его центру – происходит гравитационное сжатие. В центре облака образуется уплотнение, состоящее из молекулярного водорода и гелия. Возрастание плотности и температуры в центре приводит к распаду молекул на атомы, ионизации атомов и образованию плотного ядра протозвезды.
Существует гипотеза о цикличности состояния Вселенной. Когда-то возникнув из сверхплотного сгустка материи, Вселенная, возможно, уже в первом цикле породила внутри себя миллиарды звездных систем и планет. Но затем Вселенная начинает стремиться к тому состоянию, с которого начиналась история цикла. В конце концов, вещество Вселенной возвращается в первоначальное сверхплотное состояние, уничтожив всю жизнь, попавшуюся на пути. И так повторяется каждый раз, в каждом цикле на протяжении вечности.
К началу 30-х годов ХХ в. сложилось мнение, что главные составляющие Вселенной - галактики, каждая из которых в среднем состоит из 100 млрд. звезд. Солнце вместе с планетной системой входит в нашу Галактику, основную массу звезд которой мы наблюдаем в форме Млечного Пути. Кроме звезд и планет, Галактика содержит значительное количество разреженных газов и космической пыли.
Конечна или бесконечна Вселенная, какая у нее геометрия – эти и многие другие вопросы связаны с эволюцией Вселенной, в частности с наблюдаемым расширением. Если скорость «разлета» галактик увеличится на 75 км/с на каждый миллион парсек, то экстраполяция к прошлому приводит к удивительному результату: примерно 10-20 млрд. лет назад вся Вселенная была сосредоточена в очень маленькой области. Многие ученые считают, что в то время плотность Вселенной была такая же, как у атомного ядра: Вселенная представляла собой одну гигантскую «ядерную каплю». По каким-то причинам эта «капля» пришла в неустойчивое состояние и взорвалась. Последствия этого взрыва мы наблюдаем сейчас как системы галактик.
При данной оценке времени образования Вселенной предполагалось, что наблюдаемая нами сейчас картина разлета галактик происходила с одинаковой скоростью и в сколь угодно далеком прошлом. А именно на таком предположении и основана гипотеза первичной Вселенной – гигантской «ядерной капли», пришедшей в состояние неустойчивости.
В настоящее время космологи предполагают, что Вселенная не расширялась «от точки до точки», а как бы пульсирует между конечными пределами плотности. Это означает, что в прошлом скорость разлета галактик была меньше, чем сейчас, а еще раньше система галактик сжималась, т. е. Галактики приближались друг к другу с тем большей скоростью, чем большее расстояние их разделяло. Современная космология располагает рядом аргументов в пользу картины «пульсирующей Вселенной». Такие аргументы носят чисто математический характер; главнейший из них – необходимость учета реально существующей неоднородности Вселенной. Чтобы решить вопрос, какая из двух гипотез справедлива, потребуется огромная работа.
Современная космология возникла в начале ХХ в. после создания релятивистской теории тяготения. Первая релятивистская модель, основанная на новой теории тяготения и претендующая на описание всей Вселенной, была построена А. Эйнштейном в 1917 г. Однако она описывала статическую Вселенную и, как показали астрофизические наблюдения, оказалось неверной.
В 1922-1924 гг. советским математиком А.А. Фридманом были предложены общие уравнения для описания всей Вселенной, меняющейся с течением времени. Звездные системы не могут находиться в среднем на неизменных расстояниях друг от друга. Они должны либо удаляться, либо сближаться. Такой результат – неизбежное следствие наличия сил тяготения, которые главенствуют в космических масштабах. Вывод Фридмана означал, что Вселенная должна либо расширятся, либо сжиматься. Отсюда следовал пересмотр общих представлений о Вселенной. В 1929 г. американский астроном Э. Хаббл (1889-1953) с помощью астрофизических наблюдений открыл расширение Вселенной, подтверждающее правильность выводов Фридмана.
Модели Фридмана служат основой всего последующего развития космологии. Они описывают механическую картину движения огромных масс Вселенной и ее глобальную структуру. Если прежние космологические построения призваны описывать наблюдаемую теперь структуру Вселенной с неизменным в среднем движением миров в ней, то модели Фридмана по своей сути были эволюционными, связывали сегодняшнее состояние Вселенной с ее предыдущей историей. Из этой теории следует, что в далеком прошлом Вселенная была совсем не похожа на наблюдаемую нами сегодня. Тогда не было ни отдельных небесных тел, ни их систем, все вещество было почти однородным, очень плотным, быстро расширялось. Только значительно позже из такого вещества возникли галактики и их скопления.
Начиная с конца 40-х годов нашего века, все большее внимание в космологии привлекает физика процессов на разных этапах космологического расширения. В выдвинутой в это время Г.А. Гамовым теории горячей Вселенной рассматривались ядерные реакции, протекавшие в самом начале расширения Вселенной в очень плотном веществе. При этом предполагалось, что температура вещества была велика и падала с расширением Вселенной. Теория предсказывала, что вещество, из которого формировались первые звезды и галактики, должно состоять в основном из водорода (75%) и гелия (25%), примесь других химических элементов незначительна. Другой вывод теории – в сегодняшней Вселенной должно существовать слабое электромагнитное излучение, оставшееся от эпохи большой плотности и температуры вещества. Такое излучение в ходе расширения Вселенной было названо реликтовым излучением.
Тогда же появились принципиально новые наблюдательные возможности в космологии: возникла радиоастрономия, расширились возможности оптической астрономии. Сейчас Вселенная вплоть до расстояний в несколько парсек исследуется разными методами.
Космологические модели приводят к выводу, что судьба Вселенной зависит только от средней плотности заполняющего ее вещества.
Если она ниже некоторой критической плотности, расширение Вселенной будет продолжаться вечно. Этот вариант называется «открытая Вселенная». Похожий сценарий развития ждет и плоскую Вселенную, когда плотность равна критической. Через многие миллиарды лет прогорит все вещество в звездах, и галактики погрузятся во тьму. Останутся только планеты, белые и коричневые карлики, а столкновения между ними будут крайне редки. Если Земля все еще останется к этому времени, она будет замерзшей скалой в темной расширяющейся Вселенной.
Однако даже в этом случае Земля не вечна. Если верна теория великого объединения взаимодействий, через 1040 лет распадутся составляющие бывшие звезды протоны и нейтроны. Спустя приблизительно 10100 лет испарятся гигантские черные дыры. В нашем мире останутся лишь электроны, нейтрино и фотоны, удаленные друг от друга на огромные расстояния. В известном смысле это будет конец времени.