Загрязнение атмосферы, его виды

Автор работы: Пользователь скрыл имя, 01 Июля 2013 в 14:40, реферат

Описание работы

Загрязнение атмосферы — привнесение в атмосферный воздух новых нехарактерных для него физических, химических и биологических веществ или изменение естественной среде многолетней концентрации этих веществ в нём.
Основные загрязнители атмосферного воздуха:
Оксид углерода
Оксиды азота
Диоксид серы
Углеводороды
Альдегиды
Тяжёлые металлы (Pb, Cu, Zn, Cd, Cr)
Аммиак
Атмосферная пыль

Файлы: 1 файл

Экология.docx

— 92.26 Кб (Скачать файл)
  1. Загрязнение атмосферы, его виды.

Загрязнение атмосферы — привнесение в атмосферный воздух новых нехарактерных для него физических, химических и биологических веществ или изменение естественной среде многолетней концентрации этих веществ в нём.

Основные загрязнители атмосферного воздуха:

  • Оксид углерода
  • Оксиды азота
  • Диоксид серы
  • Углеводороды
  • Альдегиды
  • Тяжёлые металлы (Pb, Cu, Zn, Cd, Cr)
  • Аммиак
  • Атмосферная пыль

Окись углерода (СО) – бесцветный газ, не имеющий запаха, известен также под названием «угарный газ». Образуется в результате неполного сгорания ископаемого топлива (угля, газа, нефти) в условиях недостатка кислорода и при низкой температуре. При этом 65% от всех выбросов приходится на транспорт, 21% - на мелких потребителей и бытовой сектор, а 14% - на промышленность. При вдыхании угарный газ за счёт имеющейся в его молекуле двойной связи образует прочные комплексные соединения с гемоглобином крови человека и тем самым блокирует поступление кислорода в кровь.

Двуокись углерода (СО2) – или углекислый газ, - бесцветный газ с кисловатым запахом и вкусом, продукт полного окисления углерода. Является одним из парниковых газов.

Двуокись серы (SO2) (диоксид  серы, сернистый ангидрид) - бесцветный газ с резким запахом. Образуется в процессе сгорания серосодержащих ископаемых видов топлива, в основном угля, а также при переработке  сернистых руд. Он, в первую очередь, участвует в формировании кислотных  дождей. Общемировой выброс SO2 оценивается  в 190 млн. тонн в год. Длительное воздействие  диоксида серы на человека приводит вначале  к потере вкусовых ощущений, стесненному  дыханию, а затем – к воспалению или отеку лёгких, перебоям в сердечной  деятельности, нарушению кровообращения и остановке дыхания.

Окислы азота (оксид и  диоксид азота) – газообразные вещества: монооксид азота NO и диоксид азота NO2 объединяются одной общей формулой NOх . При всех процессах горения образуются окислы азота, причем большей частью в виде оксида. Чем выше температура сгорания, тем интенсивнее идет образование окислов азота. Другим источником окислов азота являются предприятия, производящие азотные удобрения, азотную кислоту и нитраты, анилиновые красители, нитросоединения. Количество окислов азота, поступающих в атмосферу, составляет 65 млн. тонн в год. От общего количества выбрасываемых в атмосферу окислов азота на транспорт приходится 55%, на энергетику – 28%, на промышленные предприятия – 14%, на мелких потребителей и бытовой сектор – 3%.

Озон (О3) – газ с характерным  запахом, более сильный окислитель, чем кислород. Его относят к  наиболее токсичным из всех обычных  загрязняющих воздух примесей. В нижнем атмосферном слое озон образуется в  результате фотохимических процессов  с участием диоксида азота и летучих  органических соединений.

Углеводороды – химические соединения углерода и водорода. К  ним относят тысячи различных  загрязняющих атмосферу веществ, содержащихся в несгоревшем бензине, жидкостях, применяемых в химчистке, примышленных растворителях и т.д.

Свинец (Pb ) – серебристо-серый металл, токсичный в любой известной форме. Широко используется для производства красок, боеприпасов, типографского сплава и т.п. около 60%мировой добычи свинца, ежегодно расходуется для производства кислотных аккумуляторов. Однако основным источником (около 80%) загрязнения атмосферы соединениями свинца являются выхлопные газы транспортных средств, в которых используется этилированный бензин.

Промышленные пыли в зависимости  от механизма их образования подразделяются на следующие 4 класса:

- механическая пыль – образуется в результате измельчения продукта в ходе технологического процесса;

- возгоны – образуются в результате объёмной конденсации паров веществ при охлаждении газа, пропускаемого через технологический аппарат, установку или агрегат;

- летучая зола – содержащийся в дымовом газе во взвешенном состоянии несгораемый остаток топлива, образуется из его минеральных примесей при горении;

- промышленная сажа – входящий в состав промышленного выброса твёрдый высокодисперсный углерод, образуется при неполном сгорании или термическом разложении углеводородов.

Основными источниками антропогенных  аэрозольных загрязнений воздуха  являются теплоэлектростанции (ТЭС), потребляющие уголь. Сжигание каменного угля, производство цемента и выплавка чугуна дают суммарный выброс пыли в атмосферу, равный 170 млн. тонн в год.

В последнее время на эволюцию атмосферы стал оказывать влияние человек. Результатом его деятельности стал постоянный значительный рост содержания в атмосфере углекислого газа из-за сжигания углеводородного топлива, накопленного в предыдущие геологические эпохи. Громадные количества СО2 потребляются при фотосинтезе и поглощаются мировым океаном. За последние 100 лет содержание СО2 в атмосфере возросло на 10 %, причём основная часть (360 млрд тонн) поступила в результате сжигания топлива. Если темпы роста сжигания топлива сохранятся, то в ближайшие 20—30 лет количество СО2 в атмосфере удвоится и может привести к глобальным изменениям климата.

Сжигание топлива — основной источник и загрязняющих газов (СО, NO, SO2). Диоксид серы окисляется кислородом воздуха до SO3 в верхних слоях атмосферы, который в свою очередь взаимодействует с парами воды и аммиака, а образующиеся при этом серная кислота (Н2SO4) и сульфат аммония ((NH4)2SO4) возвращаются на поверхность Земли в виде т. н. кислотных дождей. Использование двигателей внутреннего сгорания приводит к значительному загрязнению атмосферы оксидами азота, углеводородами и соединениями свинца (тетраэтилсвинец Pb(CH3CH2)4)).

Аэрозольное загрязнение  атмосферы обусловлено как естественными  причинами (извержение вулканов, пыльные  бури, унос капель морской воды и  пыльцы растений и др.), так и хозяйственной  деятельностью человека (добыча руд  и строительных материалов, сжигание топлива, изготовление цемента и  т. п.). Интенсивный широкомасштабный вынос твёрдых частиц в атмосферу — одна из возможных причин изменений климата планеты.

 

  1. Биоиндикация состояния экосистем.

Наиболее часто цитируемой и, в  то же время, наиболее идеологически  расплывчатой областью экологии является некоторая совокупность методов, называемая “биоиндикацией”. Хотя истоки наблюдений за индикаторными свойствами биологических объектов можно найти в трудах естествоиспытателей самой глубокой древности, до сих пор отсутствует стройная теория и адекватные методы биоиндикации.

Основой задачей биоиндикации является разработка методов и критериев, которые могли бы адекватно отражать уровень антропогенных воздействий с учетом комплексного характера загрязнения и диагностировать ранние нарушения в наиболее чувствительных компонентах биотических сообществ. Биоиндикация, как и мониторинг, осуществляется на различных уровнях организации биосферы: макромолекулы, клетки, органа, организма, популяции, биоценоза. Очевидно, что сложность живой материи и характера ее взаимодействия с внешними факторами возрастает по мере повышения уровня организации. В этом процессе биоиндикация на низших уровнях организации должна диалектически включаться в биоиндикацию на более высоких уровнях, где она предстает в новом качестве и может служить для объяснения динамики более высокоорганизованной системы.

Считается, что использование метода биоиндикации позволяет решать задачи экологического мониторинга в тех случаях, когда совокупность факторов антропогенного давления на биоценозы трудно или неудобно измерять непосредственно. К сожалению, современная практика биоиндикации носит в значительной мере феноменологический характер, выраженный в пространном изложении подмеченных исследователем фактов поведения различных видов организмов в конкретных условиях среды. Иногда эти описания сопровождаются не всегда обоснованными выводами, носящими, как правило, сугубо оценочный характер (типа "хорошо / плохо", "чисто / грязно" и т.д.), основанными на чисто визуальных методах сравнения или использовании недостаточно достоверных индексов. Чаще всего такой "прогноз" делается, когда "общественное" мнение по конечному результату оценки качества экосистемы уже заранее известно, например, по прямым или косвенным параметрам среды. В результате этого, роль биоиндикации оказалась сведенной к следующей совокупности действий, технологически совпадающей с биомониторингом:

· выделяется один или несколько исследуемых факторов среды (по литературным данным или в связи с имеющейся программой мониторинговых исследований);

· собираются полевые и экспериментальные  данные, характеризующие биотические  процессы в рассматриваемой экосистеме, причем теоретически эти данные должны измеряться в широком диапазоне  варьирования исследуемого фактора (например, в условно-чистых и в условно-грязных  районах);

· некоторым образом (путем простого визуального сравнения, с использованием системы предварительно рассчитанных оценочных коэффициентов или  с применением математических методов  первичной обработки данных) делается вывод об индикаторной значимости какого-либо вида или группы видов.

В редких случаях делаются практические попытки оценить лимитирующий уровень  рассматриваемого фактора загрязнения, т.е. выполнить так называемый "анализ биологически значимых нагрузок". И  только в исключительных случаях  выполняется собственно операция "индикации", когда с использованием биоиндикаторных показателей прогнозируются неизвестные факторы среды и оценивается их значимость для всей экосистемы в ближайшем и отдаленном будущем. В качестве немногочисленных примеров организации комплексных гидроэкологических биоиндикационных исследований, в результате которых был сформулирован некоторый комплекс научно-обоснованных природоохранных решений, можно привести работы по оценке экологического состояния оз. Байкал, рек Невы и Чапаевки.

В значительной мере теоретическая  и практическая неполнота работ  в области биоиндикации связана с объективными методологическими трудностями отображения и моделирования предметной области. Оценка антропогенного воздействия на биотические компоненты экосистем во многом осложняется пространственно-временной дифференциацией видовой структуры, т.к. ценопопуляции одного и того же вида, входящие в разные сообщества организмов, характеризуются различными экологическими условиями обитания и их реакции на действие фактора могут существенно отличаться. У видов со слабо выраженными механизмами популяционного гомеостаза эти реакции всегда достаточно контрастно выражаются в снижении физиологической устойчивости части особей к действию антропогенных факторов и, в конечном счете, в нарушении процессов репродукции. Однако для большинства видов реагирование на любое техногенное воздействие (если, разумеется, оно не носит катастрофический характер) принципиально не отличается от выработанных в ходе эволюции тривиальных реакций на колеблющиеся изменения среды. В процессе адаптации биоценоза к меняющимся условиям включаются компенсационные механизмы и, при умеренных воздействиях, в популяциях вырабатывается некоторый средний, генетически обусловленный уровень интенсивности воспроизводства за счет "перераспределения факторов смертности". И только в том случае, когда давление антропогенных факторов выводит экосистему за рамки естественной изменчивости, происходит нарушение динамической стабилизации популяционных связей, изменяется генетический состав и идет подавление наиболее генерализированного свойства популяций - воспроизводственного процесса.

Относительно благополучно дело обстоит  с описательным объяснением терминов. Например, согласно определению Н.Ф. Реймерса:

“Биоиндикатор: группа особей одного вида или сообщество, по наличию, состоянию и поведению которых судят об изменениях в среде, в том числе о присутствии и концентрации загрязнителей… Сообщество индикаторное - сообщество, по скорости развития, структуре и благополучию отдельных популяций микроорганизмов, грибов, растений и животных которого можно судить об общем состоянии среды, включая, ее естественные и искусственные изменения”.

Безусловно, объективные факты  свидетельствуют о существовании  тесного влияния факторов среды  на биотические процессы экосистемы (плотность популяций, динамику видовой  структуры, поведенческие особенности). Такие факторы среды, как свет, температура, водный режим, биогенные  элементы (макро- и микроэлементы), соленость  и другие имеют функциональную важность для организмов на всех основных этапах жизненного цикла. Однако можно использовать обратную закономерность и судить, например, по видовому составу организмов о типе физической среды. Поэтому  “Биоиндикация - это определение биологически значимых нагрузок на основе реакций на них живых организмов и их сообществ. В полной мере это относится ко всем видам антропогенных загрязнений”.

Таким образом, биоиндикацию можно определить как совокупность методов и критериев, предназначенных для поиска информативных компонентов экосистем, которые могли бы:

· адекватно отражать уровень воздействия  среды, включая комплексный характер загрязнения с учетом явлений  синергизма действующих факторов;

· диагностировать ранние нарушения  в наиболее чувствительных компонентах  биотических сообществ и оценивать  их значимость для всей экосистемы в ближайшем и отдаленном будущем.

С точки зрения математики поставленная задача биоиндикации в реальных условиях относится к классу плохо формализуемых задач, поскольку характеризуется следующими особенностями: · существенной многомерностью факторов среды и измеряемых параметров экосистем;

· сильной взаимообусловленностью всего комплекса измеренных переменных, не позволяющей выделить в чистом виде функциональную связь двух индивидуальных показателей F(x);

· нестационарностью большей части информации об объектах и среде;

· трудоемкостью проведения всего комплекса измерений в единых координатах пространства и времени, в результате чего обрабатываемые данные имеют обширные пропуски.

Информация о работе Загрязнение атмосферы, его виды