Автор работы: Пользователь скрыл имя, 13 Мая 2015 в 13:45, курсовая работа
На разных сроках беременности результаты радиационного воздействия могут иметь разные последствия. На ранних сроках в большинстве случаев влияние радиации вызывает гибель плода. На более поздних сроках, если плод не погибает, то вероятнее всего будет иметь некоторые отклонения, вплоть до врожденных уродств. Отклонения могут быть и в нервной системе, которые в дальнейшем перерастают в умственную отсталость. На сроках до 28 недель радиация может вызвать остановку в развитии плода с последующей смертью.
В настоящее время спектр детерминированных эффектов и зависимость их от уровней облучения человека достаточно изучены, однако еще нет окончательных суждений относительно количественных различий в порогах облучения за счет индивидуальной радиочувствительности отдельных представителей гетерогенных групп населения.
В то же время важно отметить, что пороги доз облучения для острого, кратковременного радиационного воздействия и для протяженного во времени облучения существенно различаются. Следовательно, облучение, растянутое во времени, в общем повышает уровень порога. Несомненно, что эта закономерность, определяемая прежде всего процессами репарации повреждений в целостном организме, характерна и для воздействия так называемых малых доз облучения (под малыми дозами понимают уровни воздействия в диапазонах менее 0,2 Гр и мощности дозы менее 0,1 Гр/ч), особенно если учесть, что системы клеточного восстановления в организме функционируют более эффективно после облучения дозой малой мощности, чем после воздействия дозы большой мощности. Иными словами, при прочих равных условиях острое воздействие ионизирующего излучения всегда опаснее хронического, длительного облучения в эквивалентных дозах.
Внутриутробное развитие – очень ответственный период, во многом определяющий жизнь человека после рождения и состояние его здоровья. Именно в этот период под влиянием различных негативных факторов происходит формирование серьезных дефектов, аномалий и уродств, известных как пороки развития плода.
Воздействие радиации на женский организм происходит по общим законам лучевых повреждений. В первую очередь поражаются три важнейшие системы - гормональная, иммунная и репродуктивная. При беременности изменяются ответные реакции организма на действие ионизирующего фактора. Это обусловлено гормональной перестройкой, снижением иммунного статуса и наличием развивающегося плодного яйца, элементы которого (плацента, плодные оболочки, амниотическая жидкость, плод) с различной интенсивностью и специфичностью накапливают отдельные радионуклиды.
Помимо иммунной системы страдает и обмен веществ. Радиоактивные вещества, проникая в клетки, сильно тормозят либо совсем останавливают обменные процессы. Значительно замедляется или также останавливается синтез ферментов и белков. Мембраны клеток перестают выполнять свою основную функцию, т.е. защитную, и становятся легкопроходимыми для вирусов.
Степень опасности для плода определяется временем попадания радионуклида в организм матери (до или во время беременности), длительностью воздействия, способностью радиоизотопа проникать через плацентарный барьер, накапливаться в организме плода и его элиминацией. Большое значение имеют вид радиоизотопа, энергия излучения, распределение его в органах и тканях и многие другие факторы.
В случае поступления радионуклидов в организм женщины до или во время беременности они избирательно накапливаются в органах и тканях, являясь постоянным источником воздействия на эмбрион и плод. Роль материнского организма в реализации негативного воздействия на плод возрастает, если в ее организм поступил радионуклид, избирательно накапливающийся в органах, обеспечивающих сохранение и развитие беременности (эндокринные железы, в основном щитовидная, и др.).
Результаты воздействия инкорпорированных источников радиации на эмбрион и плод в значительной степени определяются стадией внутриутробного развития. Если такое воздействие имело место до имплантации зародыша , то в 60-70 % случаев эмбрион погибает. Облучение в период основного органогенеза и плацентации часто сопровождается индукцией различных аномалий развития (тератогенное действие), а также внутриутробной гибелью зародыша . Наиболее характерным последствием воздействия ионизирующей радиации считается тератогенный эффект, т.е. врожденные уродства. Среди них основное значение имеют аномалии развития центральной нервной системы, что в дальнейшем почти всегда приводит к умственной отсталости.
Из ранее рассмотренного вопроса сделаем вывод, что чем моложе плод, тем выше его радиочувствительность. При обследовании выживших детей в Хиросиме и Нагасаки, подвергшихся внутриутробному облучению, повреждающее действие радиации проявилось в виде различных уродств, задержки физического и умственного развития или их сочетаний. Наиболее частые уродства — микроцефалия (уменьшение объема и размера головы), гидроцефалия (избыточное скопление жидкости в головном мозге), аномалии развития сердца. Пороки развития и уродства, возникающие вследствие облучения внутриутробно, объединяются термином тератогенные эффекты.
Тератогенез - это возникновение пороков развития у плода под влиянием тератогенных факторов (радиация, химические, лекарственные вещества, инфекции). Тератогенным считается такое влияние, которое приводит к пороку развития эмбриона или плода, развивавшегося до этого нормально.
Пороки развития, т.е. тератогенные эффекты могут проявляться как уродствами, так и генными нарушениями.
Действие
тератогенных эффектов зависит от ряда
условий: время действия тератогена (в
период дифференцировки органов возникают
различные пороки развития; тип порока
зависит от чувствительности конкретного
органа в момент воздействия вредного
фактора),
доза и взаимодействие
с другими факторами (чем выше доза, тем
тяжелее поражение), материнские факторы.
Облучение в период развития даже в незначительных дозах (> 0,1 Гр) вызывает тератогенные
эффекты в виде различных пороков
развития, задержки умственного развития
и уродств. С одной стороны, их можно рассматривать,
как стохастические эффекты, имея в виду
вероятностный характер их проявления
в зависимости от стадии эмбриогенеза, на которой произошло облучение.
Однако правильнее их отнести к разновидности
соматических эффектов, так как они возникают
у ребёнка в результате его непосредственного
облучения в состоянии эмбриона или плода. Во всяком случае тератогенные
эффекты не следует смешивать с наследственными
эффектами, возникающими в потомстве
облученных родителей, которое не подвергалось
непосредственному радиационном
В настоящее время наибольшее значение имеют следующие радиоактивные элементы: I, 32Р, 134Cs и трансурановые элементы (237Pu, 241Am). Радиоактивный распад этих элементов сопровождается высвобождением энергии в виде альфа-, бета - и гамма-лучей, обладающих различной проникающей способностью.
Лучевые поражения плода возможны, если тот или иной изотоп проникнет через плаценту. Необходимо подчеркнуть, что трансплацентарный путь является основным в проникновении радиоизотопов из организма матери в организм плода. Существует несколько механизмов трансплацентарного перехода радионуклидов:
Изучение генетических последствий облучения – дело серьезное. Во-первых, очень мало известно о том, какие повреждения возникают в генетическом аппарате человека при облучении; во-вторых, полное выявление всех наследственных дефектов происходит лишь на протяжении многих поколений; и, в-третьих, как и в случае рака, эти дефекты невозможно отличить от тех, которые возникли совсем по другим причинам. Около 10% всех живых новорожденных имеют те или иные генетические дефекты, начиная от необременительных физических недостатков типа дальтонизма и кончая такими тяжелыми состояниями, как синдром Дауна, хорея Гентингтона и различные пороки развития. Многие из эмбрионов и плодов с тяжелыми наследственными нарушениями не доживают до рождения; согласно имеющимся данным, около половины всех случаев спонтанного аборта связаны с аномалиями в генетическом материале. Но даже если дети с наследственными дефектами рождаются живыми, вероятность для них дожить до своего первого дня рождения в пять раз меньше, чем для нормальных детей. Генетические нарушения можно отнести к двум основным типам: хромосомные аберрации, включающие изменения числа или структуры хромосом, и мутации в самих генах. Генные мутации подразделяются далее на доминантные (которые проявляются сразу в первом поколении) и рецессивные (которые могут проявиться лишь в том случае, если у обоих родителей мутантным является один и тот же ген; такие мутации могут не проявиться на протяжении многих поколений или не обнаружиться вообще). Оба типа аномалий могут привести к наследственным заболеваниям в последующих поколениях, а могут и не проявиться вообще. Оценки НКДАР ООН касаются лишь случаев тяжелой наследственной патологии.
Более чем у 27 000 детей, родители которых получили относительно большие дозы во время атомных бомбардировок Хиросимы и Нагасаки, были обнаружены лишь две вероятные мутации, а среди примерно такого же числа детей, родители которых получили меньшие дозы, не отмечено ни одного такого случая. Среди детей, родители которых были облучены в результате взрыва атомной бомбы, не было также обнаружено статистически достоверного прироста частоты хромосомных аномалий. И хотя в материалах некоторых обследований содержится вывод о том, что у облученных родителей больше шансов родить ребенка с синдромом Дауна, другие исследования этого не подтверждают.
Несколько настораживает сообщение о том, что у людей, получающих малые дозы облучения, действительно наблюдается повышенное содержание клеток крови с хромосомными нарушениями. Этот феномен при чрезвычайно низком уровне облучения был отмечен у жителей курортного местечка Бадгастайн в Австрии и там же среди медицинского персонала, обслуживающего радоновые источники с целебными, как полагают, свойствами. Но биологическое значение таких повреждений и их влияние на здоровье человека пока не выяснены. Поскольку нет никаких других сведений, приходится оценивать риск появления наследственных дефектов у человека основываясь на результатах, полученных в многочисленных экспериментах на животных. При оценке риска появления наследственных дефектов у человека НКДАР использует два подхода. При одном подходе пытаются определить непосредственный эффект данной дозы облучения, при другом стараются определить дозу, при которой удваивается частота появления потомков с той или иной разновидностью наследственных дефектов по сравнению с нормальными радиационными условиями. Согласно оценкам, полученным при первом подходе, доза в 1 Гр, полученная при низком уровне радиации только особями мужского пола, индуцирует появление от 1000 до 2000 мутаций, приводящих к серьезным последствиям, и от 30 до 1000 хромосомных аберраций на каждый миллион живых новорожденных. Оценки, полученные для особей женского пола, гораздо менее определенны, но явно ниже; это объясняется тем, что женские половые клетки менее чувствительны к действию радиации.
Согласно ориентировочным оценкам, частота мутаций составляет от 0 до 900, а частота хромосомных аберраций от 0 до 300 случаев на миллион живых новорожденных. Согласно оценкам, полученным вторым методом, хроническое облучение при мощности дозы в 1 Гр на поколение (для человека-30 лет) приведет к появлению около 2000 серьезных случаев генетических заболеваний на каждый миллион живых новорожденных среди детей тех, кто подвергся такому облучению. Этим методом пользуются также для оценки суммарной частоты появления серьезных наследственных дефектов в каждом поколении при условии, что тот же уровень радиации будет действовать все время. Согласно этим оценкам, примерно 15 000 живых новорожденных из каждого миллиона будут рождаться с серьезными наследственными дефектами из-за такого радиационного фона. Этот метод пытается учесть влияние рецессивных мутаций. О них известно немного, и по этому вопросу еще нет единого мнения, но считается, что их вклад в суммарную частоту появления наследственных заболеваний незначителен, поскольку мала вероятность брачного союза между партнерами с мутацией в одном и том же гене.
Немного известно также о влиянии облучения на такие признаки, как рост и плодовитость, которые определяются не одним, а многими генами, функционирующими в тесном взаимодействии друг с другом. Оценки НКДАР ООН относятся преимущественно к действию радиации на единичные гены, поскольку оценить вклад таких полигенных факторов чрезвычайно трудно. Еще большим недостатком оценок является тот факт, что оба метода способны регистрировать лишь серьезные генетические последствия обучения. Есть веские основания считать, что число не очень существенных дефектов значительно превышает число серьезных аномалий, так что наносимый ими ущерб в сумме может быть даже больше, чем от серьезных дефектов. В последнем докладе НКДАР впервые была сделана попытка оценить ущерб, наносимый обществу серьезными генетическими дефектами, всеми вместе и каждым в отдельности. Например, и синдром Дауна, и хорея Гентингтона-это серьезные генетические заболевания, но социальный ущерб от них неодинаков. Хорея Гентингтона поражает организм человека между 30 и 50 годами и вызывает очень тяжелую, но постепенную дегенерацию центральной нервной системы; синдром Дауна проявляется в очень тяжелом поражении организма с самого рождения. Если пытаться как-то дифференцировать эти болезни, то очевидно, что синдром Дауна следует расценивать как болезнь, причиняющую обществу больше ущерба, чем хорея Гентингтона. Таким образом, НКДАР ООН попытался выразить генетические последствия облучения через такие параметры, как сокращение продолжительности жизни и периода трудоспособности. Эти параметры, конечно, не могут дать адекватного представления о страданиях жертв наследственных недугов или таких вещах, как отчаяние родителей больного ребенка, но к ним и невозможно подходить с количественными мерками. Отдавая себе отчет в том, что эти оценки не более чем первая грубая прикидка, НКДАР приводит в своем последнем докладе следующие цифры: хроническое облучение населения с мощностью дозы 1 Гр на поколение сокращает период трудоспособности на 50000 лет, а продолжительность жизни также на 50000 лет на каждый миллион живых новорожденных среди детей первого облученного поколения; те же параметры при постоянном облучении многих поколений выходят на стационарный уровень: сокращение периода трудоспособности составит 340000 лет, а сокращение продолжительности жизни 286 000 лет на каждый миллион живых новорожденных. Несмотря на свою приблизительность, эти оценки все же необходимы, поскольку они представляют собой попытку принять в расчет социально значимые ценности при оценке радиационного риска. А это такие ценности, которые все в большей степени влияют на решение вопроса о том, приемлем риск в том или ином случае или нет. И это можно только приветствовать.