Гипоксия и иммунитет

Автор работы: Пользователь скрыл имя, 24 Мая 2013 в 09:35, реферат

Описание работы

Особенности функционирования иммунной системы в условиях горной гипоксии мало освещены в литературе. Горный климат имеет ряд специфических особенностей, отличающих его от климата равнинных регионов. Одним из важнейших факторов в воздействии на организм горного климата является низкое атмосферное давление и соответствующее ему сниженное парциальное давление кислорода, которое проявляет свое действие на фоне низкой температуры воздуха и его сухости, высокой ультрафиолетовой радиации, резких суточных и сезонных перепадов температур и многих других природных факторов.

Содержание работы

Гипоксия и иммунитет ………………………………………………………………3

Заключение………………………………………………….…………18

Литература……………………………………………………………..19

Файлы: 1 файл

Патфиза гипоксия.docx

— 55.62 Кб (Скачать файл)

В последние годы предпринимались  исследования отдельных звеньев  иммунитета при адаптации здоровых людей к климатическим условиям высокогорья, которые проводились  либо у вновь прибывших в горы со сроками наблюдения до одного месяца, либо у проживших там в течение двух лет. При этом не исследовались динамика иммунологических сдвигов на разных этапах формирования адаптационного процесса и субпопуляционный состав Т-клеток.

Изучался иммунный статус практически  здоровых мужчин на разных этапах адаптации  к высокогорью Тянь-Шаня. Наблюдения проведены в низкогорье (760 м) и затем – при переезде автотранспортом в условия высокогорья (3200–3800 м) со сроками наблюдения до двух лет. Иммунологическое обследование включало дифференцированное изучение в розеточных тестах Т- и В-популяций лимфоцитов.

Оказалось, что адаптационный процесс  при форсированном подъеме в  экстремальные условия высокогорья  с перепадом высот до 2500 м носит фазный характер, ему свойственна начальная стрессовая реакция и комплекс сдвигов, направленных на сохранение иммунного гомеостаза.

В ранний период адаптации (3–5-й дни) происходит угнетение Т-звена иммунитета, которое выражается в снижении содержания в крови Е-РОК и их потенциальной  способности трансформироваться в  бласты под влиянием ФГА. Эти сдвиги сочетаются с возрастанием содержания в плазме кортикостероидов. В последующие дни адаптации содержание этих клеток и их функциональная активность восстанавливаются, достигая к 25–30 дню исходных значений в низкогорной местности. Величина этих показателей у пришлого населения на высоте 3600 м не меняется на 90, 150, 270-е дни пребывания в высокогорье и во все сроки наблюдения остается ниже соответствующих показателей у аборигенов.

Адаптация к высокогорью оказывает  также влияние на численный состав регуляторных субпопуляций Т-лимфоцитов. В первые дни адаптации (3–5-й день) происходит снижение содержания в крови Тл-РОК (хелперы) и возрастание Ту-РОК (супрессоры), отражающих, по-видимому, неполноценность иммунной защиты. В последующие дни адаптационного периода (25–30-й и 90-й дни) величина этих показателей устанавливается на фоновом уровне.

Пребывание в высокогорье приводит также к возрастанию в общей  циркуляции числа ЕАС-РОК с интенсификацией  синтеза иммуноглобулинов М к 25–30-му дню, которые, как известно, отражают раннюю иммунологическую реакцию на тимуснезависимые антигены, т.е. антитела первичного ответа. К 90-му дню адаптации  происходит переключение синтеза иммуноглобулинов с М на G и А, которое характерно для вторичного иммунного ответа. К 150-му дню содержание ЕАС-РОК снижается  до исходных данных, а к 270-му дню  адаптации – ниже этого уровня.

Таким образом, в процессе адаптации  Т-звено иммунитета устанавливается  в течение месяца на фоновом уровне, а В-Звено иммунитета перестраивается  на новый уровень функционирования, адекватный средовым условиям.

В рамках данной проблемы нами проводилась  идентификация кластеров дифференцировки (СД) антигенных маркеров лимфоцитов с помощью моноклональных антител методом непрямой поверхностной иммунофлюоресценции.

Выявлено, что в первые дни адаптации  к высокогорью происходит существенное снижение содержания в крови лимфоцитов с экспрессированными на них антигенами СД7+ и СД22+ (Т- и В-клетки), СД4+ (Т-хелперы-индукторы) и СД8+ (Т-супрессоры-цитотоксины), отражающие неполноценность иммунологической защиты (период иммунологического риска), но к концу месячного пребывания в высокогорье эти показатели устанавливаются на фоновом уровне (Китаев М.И. с соавт., 1997).

В ранний период адаптации имеет  место также существенное возрастание  удельного содержания нулевых клеток крови за счет перераспределения  форменных элементов крови, так  как абсолютное число этих клеток не меняется. Повышение уровня нулевых  клеток в этот период можно связать  с активацией в высокогорье симпатикоадреналовой системы, которая, по данным В.Ф. Чеботарева (1979), приводит к снижению аффинности рецепторов Т-клеток. На всех этапах адаптации удельное содержание нулевых клеток у пришлого населения меньше, чем у уроженцев гор.

Выявленные фазовые изменения  иммунологической реактивности организма  при форсированной адаптации  находятся в соответствии с динамикой  иммунитета при стрессе (Зимин Ю.И., 1979). В свете работ об активации надпочечников в первые дни адаптации, можно думать, что кортикостероиды оказывают иммунодепрессивное действие на процессы иммуногенеза. Такого рода перестройка имеет адаптационную природу и может рассматриваться как одно из проявлений неспецифической стресс-реакции. Этот процесс, по мнению П.Д. Горизонтова и Ю.И. Зимина (1976), направлен на увеличение сопротивляемости организма и является основой для развития следующей стадии адаптационного синдрома – резистентности.

Кроме форсированной, изучалась еще  ступенчатая адаптация, которая, как  известно, является более эффективным  режимом приспособления в горах. Для этого обследуемые лица были разделены на две группы, из которых  первую доставили в высокогорье (2800–3200 м) автотранспортом (форсированная адаптация), а вторую – через промежуточную остановку на высоте 2200 м продолжительностью 8–10 дней (ступенчатая адаптация).

Форсированный подъем приводил на 3–5-й  день к снижению количества и функциональной активности Т-лимфоцитов, а при ступенчатой  адаптации Т- и В-звенья иммунитета существенно не меняются ни на промежуточном, ни на конечном этапах. Эти данные указывают  на то, что поэтапная адаптация, в  отличие от форсированной, не оказывает  существенного влияния на Т- и  В-звенья иммунитета. Можно думать, что возникающая при форсированном  подъеме стресс-реакция при ступенчатой  адаптации не развивается. Все это  свидетельствует о том, что транзиторная Т-лимфопения при форсированном подъеме в высокогорье связана со стресс-реакцией, возникающей при остром кислородном голодании.

Известно, что защитная функция  организма осуществляется также  транзиторными периферическими  макрофагами-моноцитами, функция которых  в высокогорье не была изучена. Наши исследования показали, что для раннего  периода адаптации к высокогорью (3600 м) характерно подавление функциональной активности моноцитов в тестах фагоцитоза и снижение экспрессии С3-рецепторов для комплемента и Fc-рецепторов для иммуноглобулинов. Нормализация этих показателей наступает в течение года, за исключением экспрессии Fc- и С 3 – рецепторов, которые остаются на более низком по сравнению с исходным уровне.

Таким образом, адаптационный процесс  приводит к снижению участвующих  в иммунном процессе мононуклеарных фагоцитов, несущих на своей поверхности рецепторы к Fc-фрагменту иммуноглобулинов и С3-фрагменту комплемента. Механизм этого явления, по-видимому, связан с возрастанием содержания в крови кортикостероидов, оказывающих на мононуклеарные фагоциты супрессивное действие.

Для характеристики состояния иммунитета при адаптации к высотной гипоксии значительный интерес представляет исследование миграции стволовых клеток с территорий резерва (костный мозг) в центральные органы иммунитета, где они дифференцируются в Т- и В-лимфоциты. В рамках данной проблемы Б.Т. Тулебеков и А.Ш. Норимов (1980) наблюдали у инбредных мышей, подвергающихся ступенчатой барокамерной тренировке к гипоксии, существенное увеличение содержания стволовых колониеобразующих клеток в костном мозге и периферической крови и уменьшение их числа в селезенке, что указывает на перераспределение под влиянием гипоксии клеточных популяций. Поскольку острая гипоксия приводила у инбредных мышей, иммунизированных эритроцитами барана, к резкому снижению

антителообразования, Б.Т. Тулебеков (1980) продолжил исследования в направлении изучения кооперации Т- и В-лимфоцитов. Полученные им данные свидетельствуют, что супрессия иммунного ответа связана с нарушением функциональной активности Т-клеток, поскольку функция В-лимфоцитов усиливается. В.А. Козлов с соавт. (1978) также наблюдали на линейных мышах в разные сроки после острой барокамерной гипоксии стимуляцию миграционной способности стволовых кроветворных клеток и подавление миграционной способности В-лимфоцитов из костного мозга в селезенку. На этом основании делается предположение, что стимуляция стволовых кроветворных клеток связана с активизацией в условиях гипоксии эритропоэза, а ингибиция миграции В-лимфоцитов может зависеть от уменьшения их числа вследствие подавления иммунокомпетентных предшественников.

В развитии иммунодефицитного состояния при гипоксии ведущую роль играют изменения функциональной активности различных субпопуляций регуляторных Т-клеток. С одной стороны, наблюдается угнетение функции Т-клеток-хелперов, обеспечивающих совместно с макрофагами включение В-лимфоцитов в дифференцировку с накоплением антителопродуцентов, с другой стороны, под влиянием гипоксии усиливается функциональная активность специфических и неспецифических Т-супрессоров, которые блокируют включающее действие Т-клеток-хелперов, тормозят антителогенез и обеспечивают развитие толерантности.

Иммунный статус при  острой горной болезни

Одним из грозных осложнений, возникающих  при кратковременном пребывании в условиях высокогорья, является развитие острой горной болезни (ОГБ). Был изучен иммунный статус у 421 практически здорового  мужчины в возрасте 18–20 лет в  острый период адаптации к высокогорью, которые в зависимости от характера  адаптации были разделены на 2 группы. В первую группу вошли 342 человека с  благоприятным течением адаптации, во вторую – 79 человек, у которых  в первые три дня пребывания на высоте развилась ОГБ легкой и  среднетяжелой формы. Диагноз считался достоверным, если характерная для  этого заболевания симптоматика сохранялась не менее 3–5 дней. Иммунологические исследования проводили до подъема в высокогорье (1550 м) и затем в различные сроки пребывания на высоте (3600 м).

Острая горная болезнь, в отличие  от благоприятного течения адаптации, характеризовалась выраженной недостаточностью Т- и В-звеньев иммунитета и системы  мононуклеарных фагоцитов, которая сохранялась по отдельным показателям до-5 месяцев. Нарушения параметров клеточного иммунитета при ОГБ характеризовались стойкой Т-лимфопенией, снижением способности этих клеток трансформироваться в бласты под влиянием ФГА и КОН'а и низким содержанием в крови Т-клеток с хелперной активностью (рис. 4,5). Кроме того, при ОГБ, в отличие от благоприятного течения адаптации, происходило подавление В-розеткообразования и стойкое повышение числа нулевых лимфоцитов, отражающих поступление в общую циркуляцию клеток, не завершивших нормальный цикл дифференцировки.

ОГБ, в отличие от благоприятного течения адаптации, характеризовалась  более выраженной функциональной неполноценностью мононуклеарных фагоцитов, которая проявлялась снижением их фагоцитарной активности, низкой продукцией супероксидных радикалов в НСТ-тесте, уменьшением содержания лизосом в цитоплазме, угнетением экспрессии Fc- и С3-рецепторов на мембране, низкой способностью моноцитов к адгезии и распластыванию (Китаев М.И. и Гончаров А.Г., 1987).

Механизм иммунологической недостаточности  при ОГБ, возможно, связан с наличием «скрытых» дефектов иммунной системы, которые в условиях высокогорной гипоксии трансформируются в выраженный дисбаланс в системе иммунитета.

Выявлена зависимость развития ОГБ от исходного иммунологического  фона. Удовлетворительное состояние  исходной иммунологической реактивности организма позволяет прогнозировать высокую адаптивную возможность  системы иммунитета в экстремальных  условиях высокогорья, а снижение ее в фоновых обследованиях негативно  сказывается на адаптационном процессе. У лиц, предрасположенных к ОГБ, имеет место существенное снижение в общей циркуляции содержания общих  Т-лимфоцитов и Т-лимфоцитов-хелперов, увеличение числа нулевых клеток, снижение фагоцитарной активности моноцитов  и нейтрофилов с монодисперсными  частицами латекса, уровня экспрессии Fc- и С3-ре-цепторов на мембране моноцитов.

Диагностическая ценность этих критериев  неоднозначна и, как показали клинические  испытания, достигает 75%. Они могут  иметь значение при отборе лиц, направляемых в горы, и прогнозирования возможной  дизадаптационной патологии. (Kitaev M.I. et al., 1995).

Адаптация к высотной гипоксии и биосинтез антител

Вопрос о состоянии синтеза  антител в условиях гипоксии, частично затрагивавшийся нами ранее, в целом  разработан до настоящего времени слабо, а относящийся к нему фактический  материал противоречив. По данным большинства  авторов, кратковременное нахождение животных в барокамере на небольшой (до 2000 м) «высоте» не влияет на продукцию антител, либо стимулирует ее – равно как и накопление АОК; продолжительная же и глубокая гипоксия, соответствующая «высотам» 4000–6500 м, снижает интенсивность названных процессов.

Показано также, что титры антител  после иммунизации значительно  выше в том случае, если антигенный стимул и гипоксия воздействуют на организм одновременно. Поданным R.P. Tenderdy (1970), барокамерная гипоксическая тренировка к высоте 6000 м резко повышает иммунные реакции. К подобному выводу пришли и другие исследователи при комбинированном воздействии на животных барокамерной гипоксии и столбнячного анатоксина (Кроткова М.П., 1966), убитой брюшнотифозной вакцины (Дурнова Г.Н. и соавт., 1969), эритроцитов барана (Меерсон Ф.З. и соавт., 1980). Проведенные в том же направлении исследования Ф.З. Меерсона и соавт. (1980, 1981) показали, что первичный иммунный ответ на эритроциты барана у адаптированных к периодическому действию барокамерной гипоксии («высота» 5000 м) крыс более выражен по количеству антителообразующих клеток и содержанию в крови антител, чем у неадаптированных животных, что свидетельствует о том, что гипоксические тренировки активируют антителогенез. Стимуляцию иммунного ответа при одновременном воздействии на организм гипоксического и антигенного стимулов наблюдали также R.P. Tenderdy и I.R. Kramer (1968). По их сведениям, иммунизация кроликов растворимым или корпускулярным антигенами одновременно или вскоре после помещения животных в барокамеру с режимом 350 мм. рт. ст. (6000 м) стимулирует образование антител и АОК, в то время как у адаптированных в течение 82 часов к «высоте» животных синтез антител почти не меняется. Эти факты находятся в соответствии с опубликованными ранее (Васильев Н.В., Богинич Л.Ф., 1973) данными о стимулирующем влиянии сильнодействующих неспецифических средовых факторов на антителообразование и могут быть интерпретированы как следствие частичной отмены иммунной супрессии в результате повреждения Т-супрессорного звена, порог чувствительности которого к различного рода воздействиям значительно ниже, чем у других клеточных субпопуляций лимфоидной ткани.

Информация о работе Гипоксия и иммунитет