Автор работы: Пользователь скрыл имя, 25 Декабря 2012 в 10:08, реферат
Инфектология - наука, изучающая инфекционный процесс, инфекционную болезнь, инфекционную патологию, возникающую в результате конкурентного взаимодействия организма человека с патогенными или условно-патогенными микроорганизмами, и разрабатывающая методы диагностики, лечения и профилактики инфекционных болезней.
Введение
Инфектология - наука, изучающая инфекционный процесс, инфекционную болезнь, инфекционную патологию, возникающую в результате конкурентного взаимодействия организма человека с патогенными или условно-патогенными микроорганизмами, и разрабатывающая методы диагностики, лечения и профилактики инфекционных болезней.
Инфекционный процесс - это комплекс взаимных приспособительных реакций на внедрение и размножение патогенного микроорганизма в макроорганизме, направленный на восстановление нарушенного гомеостаза и биологического равновесия с окружающей средой.
Современное определение инфекционного процесса включает взаимодействие трех основных факторов - возбудителя, макроорганизма и окружающей среды, каждый из которых может оказывать существенное влияние на его результат.
Патогенные микроорганизмы вызывают инфекционные заболевания у здоровых лиц. Патогенные микробы активно проникают в чувствительные организмы, так как паразитирование - важная часть их жизненного цикла.
Условно-патогенные микроорганизмы, как правило, лишены болезнетворных свойств и не вызывают инфекционных заболеваний у здорового человека. Условно-патогенные микробы вызывают поражения после пассивного переноса во внутреннюю среду организма. Важные условия их развития - массивность инфицирования и нарушения сопротивляемости организма.
Условно-патогенные и непатогенные (точнее, не способные вызывать поражения у здорового человека) микробы могут при определенных условиях вызывать оппортунистические (от англ. opportunity, возможность, удобный случай) инфекции. Подразделение микроорганизмов на непатогенные и условно-патогенные виды имеет нечеткие границы.
Некоторые микробы (например, условно-патогенные) способны размножаться в организме человека, не причиняя ему вреда. Это явление можно рассматривать как взаимную адаптацию микро - и макроорганизма. Такая форма паразитизма называется носительство.
Определение, условия возникновения инфекции и пути передачи возбудителя
Инфекция (лат. infectio - заражение), представляет собой совокупность физиологических и патологических адаптационных и репарационных реакций, которые возникают и развиваются в макроорганизме в процессе взаимодействия с патогенными микроорганизмами, вызывающими нарушения его внутренней среды и физиологических функций. Аналогичные процессы, вызванные простейшими, называют инвазиями. Инфекцию нельзя отождествлять только с микробом - возбудителем болезни, поскольку он является одним из факторов, обусловливающих развитие патологического процесса, но не определяет это состояние в целом.
Сложные процессы взаимодействия между патогенными микроорганизмами и продуктами их жизнедеятельности - токсинами, ферментами - с одной стороны, клетками, тканями и органами организма хозяина - с другой, весьма разнообразны по своим проявлениям. Последние определяются свойствами возбудителя, состоянием макроорганизма и условиями окружающей среды, в том числе социальными факторами.
Существенное значение для возникновения
инфекционного заболевания
Ткани, лишенные физиологической защиты против конкретного вида микроорганизма, служат местом его проникновения в макроорганизм, или входными воротами инфекции. Например, слизистая оболочка трахеи, бронхов- для стафилококков, пневмококков, микоплазмы пневмонии, вирусов гриппа и кори; слизистая оболочка кишечного тракта - для шигелл, сальмонелл, холерного вибриона; цилиндрический эпителий мочеполового тракта - для гонококков, стрептококков, уретральных микоплазм и хламидий. Ряд возбудителей проникает в организм несколькими путями. К ним относятся стафилококки, стрептококки, протеи, бактерии чумы и многие другие микроорганизмы.
Входные ворота инфекции часто определяют локализацию возбудителя в организме, а также патогенетические и клинические особенности инфекционного заболевания. Например, стафилококки и стрептококки при проникновении через кожу в кровь могут вызвать сепсис, на слизистую оболочку респираторных путей - бронхиты, пневмонии, на слизистую оболочку уретры - гнойные уретриты; кишечная палочка при проникновении через кожу - нагноительные процессы, на слизистую оболочку тонкой или толстой кишки - кишечные инфекции и т.д.
МИКРОСКОПИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ - способы изучения очень мелких, неразличимых невооруженным глазом объектов с помощью микроскопов. Широко применяются в бактериологических, гистологических, цитологических, гематологических и других исследованиях.
Обычная световая микроскопия предназначена для изучения окрашенных препаратов на предметных стеклах. С помощью световой микроскопии можно исследовать подвижность микроорганизмов. Для этого применяют метод висячей капли. Небольшую каплю микробной взвеси наносят на середину покровного стекла. Предметное стекло с углублением ("лункой"), края к-рого смазаны вазелином, осторожно накладывают на покровное стекло так, чтобы капля исследуемой жидкости оказалась в центре углубления, плотно прижимают к стеклу и быстро переворачивают кверху. Для исследования препарата используют иммерсионный объектив, который погружают в иммерсионное масло на покровном стекле.
Помимо световой существуют фазово-контрастная, темнопольная (ультрамикроскопия), люминесцентная, поляризационная, ультрафиолетовая и электронная микроскопия.
Фазово-контрастная микроскопия основана на интерференции света: прозрачные объекты, отличающиеся по показателю преломления от окружающей среды, выглядят либо как темные на светлом фоне (позитивный контраст), либо как светлые на темном фоне (негативный контраст). Фазово-контрастная микроскопия применяется для изучения живых микроорганизмов и клеток в культуре ткани.
Темнопольная микроскопия (ультрамикроскопия) основана на рассеянии света микроскопическими объектами (в т. ч. теми, размеры к-рых меньше предела разрешения светового микроскопа). При темнопольной микроскопии в объектив попадают только лучи света, рассеянного объектами при боковом освещении (аналогично эффекту Тиндаля, примером к-рого является обнаружение пылинок в воздухе при освещении узким лучом солнечного света). Прямые лучи от осветителя в объектив не попадают. Объекты при темнопольной микроскопии выглядят ярко светящимися на темном фоне. Применяется темнопольная микроскопия преимущественно для изучения спирохет и обнаружения (но не изучения морфологии) крупных вирусов.
В основе люминесцентной микроскопии лежит явление люминесценции, т. е. способности нек-рых веществ светиться при облучении их коротковолновой (сине-фиолетовой) частью видимого света либо ультрафиолетовыми лучами с длиной волны, близкой к видимому свету. Люминесцентная микроскопия используется в диагностических целях для наблюдения живых или фиксированных микроорганизмов, окрашенных люминесцирующими красителями (флюорохромами) в очень больших разведениях, а также при выявлении различных антигенов и антител с помощью иммунофлюоресцентного метода (см. Серологические исследования).
Поляризационная микроскопия основана на явлении поляризации света и предназначена для выявления объектов, вращающих плоскость поляризации. Применяется в основном для изучения митоза.
В основе ультрафиолетовой микроскопии лежит способность нек-рых веществ (ДНК, РНК) поглощать ультрафиолетовые лучи. Она дает возможность наблюдать и количественно устанавливать распределение этих веществ в клетке без специальных методов окраски. В ультрафиолетовых микроскопах используется кварцевая оптика, пропускающая ультрафиолетовые лучи.
Электронная микроскопия принципиально отличается от световой как устройством электронного микроскопа, так и его возможностями. В электронном микроскопе вместо световых лучей для построения изображения используется поток электронов в глубоком вакууме. В качестве линз, фокусирующих электроны, служит магнитное поле, создаваемое электромагнитными катушками. Изображение в электронном микроскопе наблюдают на флюоресцирующем экране и фотографируют. В качестве объектов используют ультратонкие срезы микроорганизмов или тканей толщиной 20- 50 нм, что значительно меньше толщины вирусных частиц. Высокая разрешающая способность современных электронных микроскопов позволяет получить полезное увеличение в миллионы раз. С помощью электронного микроскопа изучают ультратонкое строение микроорганизмов и тканей, а также проводят иммунную электронную микроскопию.