Автор работы: Пользователь скрыл имя, 14 Апреля 2013 в 23:12, реферат
Данная работа является продолжением предыдущей курсовой работы, в которой были описаны методы и области применения лазеров в современной медицине, приведен обзор современных лазеров, применяемых в медицине.
В работе исправлены следующие замечания:
устройство и принципы работы медицинских лазеров;
терапевтическое действие лазеров с точки зрения биофизических процессов;
дать подробный справочный материал (термины) по расшифровке медицинских терминов;
работу следует заканчивать выводами.
1. Устройство лазера 3
2. Принцип действия лазера 8
3. Механизмы терапевтического действия низкоинтенсивного лазерного излучения (НИЛИ) 10
Выводы 18
Глоссарий 19
Список использованных источников 23
Вологодский государственный технический университет.
Кафедра БМТ
Лазеры в медицине
Работу выполнил
студент ИМ-41
Кленков Э.В.
Вологда 2011
Данная работа является продолжением предыдущей курсовой работы, в которой были описаны методы и области применения лазеров в современной медицине, приведен обзор современных лазеров, применяемых в медицине.
В работе исправлены следующие замечания:
Оглавление
Обобщенный лазер состоит из лазерной активной среды, системы «накачки» - источника напряжения и оптического резонатора.
Система накачки передает энергию атомам или молекулам лазерной среды, давая им возможность перейти в возбужденное «метастабильное состояние» создавая инверсию населенности.
Оптический резонатор требуется для обеспечения нужного усилия в лазере и для отбора фотонов, которые перемещаются в нужном направлении. Когда первый атом или молекула в метастабильном состоянии инверсной населенности разряжается, за счет вынужденного излучения, он инициирует разряд других атомов или молекул, находящихся в метастабильном состоянии. Если фотоны перемещаются в направлении стенок лазерного вещества, обычно представляющего собой стержень или трубу, они теряются, а процесс усиления прерывается. Хотя они могут отразиться от стенок стержня или трубы, но рано или поздно они потеряются из системы, и не будут способствовать созданию луча.
С другой стороны, если один из разрушенных атомов или молекул высвободит фотон, параллельный оси лазерного вещества, он может инициировать выделение другого фотона, и они оба отразятся зеркалом на конце генерирующего стержня или трубы. Затем, отраженные фотоны проходят обратно через вещество, инициируя дальнейшее излучение в точности по тому же пути, которое снова отразится зеркалами на концах лазерного вещества. Пока этот процесс усиления продолжается, часть усиления всегда будет выходить через частично отражающее зеркало. По мере того, как коэффициент усиления или прирост этого процесса превысит потери из резонатора, начинается лазерная генерация. Таким образом, формируется узкий концентрированный луч когерентного света. Зеркала в лазерном оптическом резонаторе должны быть точно настроены для того, чтобы световые лучи были параллельны оси. Сам оптический резонатор, т.е. вещество среды, не должен сильно поглощать световую энергию.
Лазерная среда (генерирующий материал) – обычно лазеры обозначаются по типу используемого лазерного вещества. Существуют четыре таких типа:
• твердое вещество,
• газ,
• краситель,
• полупроводник.
Твердотельные лазеры используют лазерное вещество, распределенное в твердой матрице. Твердотельные лазеры занимают уникальное место в развитии лазеров. Первой рабочей лазерной средой был кристалл розового рубина (сапфировый кристалл, легированный хромом); с тех пор термин «твердотельный лазер» обычно используется для описания лазера, у которого активной средой является кристалл, легированный примесями ионов. Твердотельные лазеры – это большие, простые в обслуживании устройства, способные генерировать энергию высокой мощности. Наиболее замечательной стороной твердотельных лазеров является то, что выходная мощность обычно не постоянна, а состоит из большого числа отдельных пиков мощности.
Одним из примеров является Неодим – YAG лазер. Термин YAG является сокращением для кристалла: алюмоиттриевый гранат, который служит как носитель для ионов неодима. Этот лазер излучает инфракрасный луч с длиной волны 1 064 микрометра. Кроме того, могут использоваться и другие элементы для легирования,например эрбий (лазеры Er:YAG).
В газовых лазерах используется газ или смесь газов в трубе. В большинстве газовых лазеров используется смесь гелия и неона (HeNe), с первичным выходным сигналом в 6 328 нм (нм = 10-9 метра)видимого красного цвета. Впервые такой лазер был разработан в 1961 году и стал предвестником целого семейства газовых лазеров.
Все газовые лазеры довольно схожи по конструкции и свойствам. Например, СО2 газовый лазер излучает длину волны 10,6 микрометров в дальней инфракрасной области спектра. Аргоновый и криптоновый газовые лазеры работают с кратной частотой, излучая преимущественно в видимой части спектра. Основные длины волн излучения аргонового лазера – это 488 и 514 нм.
В лазерах на красителе используется лазерная среда, являющаяся сложным органическим красителем в жидком растворе или суспензии.
Наиболее значительная особенность этих лазеров – их «приспособляемость». Правильный выбор красителя и его концентрации позволяет генерировать лазерный свет в широком диапазоне длин волн в видимом спектре или около него. В лазерах на красителе обычно применяется система оптического возбуждения, хотя в некоторых типах таких лазеров используется возбуждение при помощи химических реакций.
Полупроводниковые (диодные) лазеры – состоят из двух слоев полупроводникового материала, сложенных вместе. Лазерный диод является диодом, излучающим свет, с оптической емкостью для усиления излучаемого света от люфта в стержне полупроводника, как показано на рисунке. Их можно настроить, меняя прикладываемый ток, температуру или магнитное поле.
Различные временные режимы работы лазера определяются частотой, с которой поступает энергия.
Лазеры с непрерывным излучением (Continuous wave, CW) работают с постоянной средней мощностью луча.
У одноимпульсных лазеров длительность импульса обычно составляет от нескольких сотен микросекунд до нескольких миллисекунд. Этот режим работы обычно называется длинноимпульсным или нормальным режимом.
Одноимпульсные лазеры с модуляцией добротности являются результатом внутрирезонаторного запаздывания (ячейка модуляции добротности), которое позволяет лазерной среде сохранять максимум потенциальной энергии. Затем, при максимально благоприятных условиях, происходит излучение одиночных импульсов, обычно с промежутком времени в 10-8 секунд. Эти импульсы обладают высокой пиковой мощностью, часто в диапазоне от 106 до 109 Ватт.
Импульсные лазеры периодического действия или сканирующие лазеры работают в принципе также как и импульсные лазеры, но с фиксированной (или переменной) частотой импульсов, которая может изменяться от нескольких импульсов в секунду до такого большого значения как 20 000 импульсов в секунду.
Физической основой работы лазера служит явление вынужденного (индуцированного) излучения. Суть явления состоит в том, что возбуждённый атом способен излучить фотон под действием другого фотона без его поглощения, если энергия последнего равняется разности энергий уровней атома до и после излучения. При этом излучённый фотон когерентен фотону, вызвавшему излучение (является его «точной копией»). Таким образом происходит усиление света. Этим явление отличается от спонтанного излучения, в котором излучаемые фотоны имеют случайные направления распространения, поляризацию и фазу.
Вероятность того, что
случайный фотон вызовет
Первоисточником генерации
является процесс спонтанного излучения,
поэтому для обеспечения
Генерируемое лазером излучение является монохроматическим (одной или дискретного набора длин волн), поскольку вероятность излучения фотона определённой длины волны больше, чем близко расположенной, связанной с уширением спектральной линии, а, соответственно, и вероятность индуцированных переходов на этой частоте тоже имеет максимум. Поэтому постепенно в процессе генерации фотоны данной длины волны будут доминировать над всеми остальными фотонами. Кроме этого, из-за особого расположения зеркал в лазерном луче сохраняются лишь те фотоны, которые распространяются в направлении, параллельном оптической оси резонатора на небольшом расстоянии от неё, остальные фотоны быстро покидают объём резонатора. Таким образом луч лазера имеет очень малый угол расходимости. Наконец, луч лазера имеет строго определённую поляризацию. Для этого в резонатор вводят различные поляроиды, например, ими могут служить плоские стеклянные пластинки, установленные под углом Брюстера к направлению распространения луча лазера.
© Москвин Сергей Владимирович
доктор биологических
наук, кандидат технических наук, ведущий
научный сотрудник ФГУ «
научный центр лазерной медицины ФМБА России», профессор кафедры восстановительной медицины ГОУ ИПК ФМБА России
В фотобиологии, рассматривающей специфическое действие света — фотохимические реакции, фотосинтез и др., изучаются процессы взаимодействия пары акцептор-фотон, обеспечивающей фотобиологический эффект. Для каждого фотоиндуцированного процесса необходимо найти свой акцептор (поглотитель) фотонов света с заданной энергией или, иначе, излучение с определенной длиной волны.
Однако автоматический перенос «акцепторной» модели на исследование биологического действия НИЛИ не может удовлетворительно объяснить уже имеющиеся экспериментальные и клинические данные. Возможно, к рассмотрению данного вопроса необходимо подойти с принципиально других позиций, в том числе и в методологическом плане. Пусковой механизм индуцированных НИЛИ биологических реакций, похоже, единый, универсальный, и обусловлен, скорее всего, универсальностью механизмов поддержания гомеостаза.
Дальнейшее развитие лазерной терапии настоятельно требует рассматривать НИЛИ как внешний фактор, обеспечивающий всего лишь запуск физиологических реакций, т. е. необходимо исследовать биологические эффекты с позиций динамического взаимодействия НИЛИ — биологический объект.
Основная сложность, стоящая перед исследователями механизмов терапевтического действия НИЛИ, заключается в многообразии процессов, происходящих в живых тканях и организмах. Еще больше проблем вызывает изучение межклеточных взаимодействий и физиологических процессов на органном уровне. В настоящее время исследованы только некоторые локальные участки регуляции биологических процессов и совсем мало обнаружено общих закономерностей.
Накоплен колоссальный
объем научных данных о характере
частных примеров ответных реакций
различных биологических
Первым обращает на себя внимание тот факт, что эффект от действия НИЛИ вызывает только оптимальная доза воздействия. При уменьшении или увеличении дозы в достаточно узком диапазоне эффект уменьшается или отсутствует вовсе. В этом принципиальное отличие действия НИЛИ от фотобиологических явлений, где зависимость от дозы носит нарастающий в широких пределах характер. Например, чем больше солнечного света, тем интенсивнее фотосинтез и больше растительной массы.