Автор работы: Пользователь скрыл имя, 22 Июня 2014 в 04:28, реферат
Механическое направление, начатое работами Д. Борели, развитое Брауне и Фишером, представлено сейчас в работах многих зарубежных школ. механический подход к изучению движений человека прежде всего позволяет определять количественную меру двигательных процессов. Измерение механических показателей двигательной функции совершено необходимо для объяснения физической сущности механических явлений. Это одна из основ биомеханики. С точки зрения физики раскрываются строение и свойства опорно-двигательного аппарата, а также движений человека. В этом отношении механическое направление никогда не потеряет своего значения. Вместе с тем иногда встречается упрощенная трактовка биомеханики как «прикладной к живому» механики, что ограничивает возможности познания действительной сложности движений человека и их целенаправленного совершенствования.
10.Ускорение тела: линейное и угловое, положительное и отрицательное, нормальное, тангециальное.Ускорение точки и телаУскорение точки - это пространственно-временная мера изменения движения точки (быстрота изменения движения - по величине и направлению скорости). Ускорение точки равно первой производной по времени от скорости этой точки в рассматриваемой системе отсчета:Ускорение точки определяется по изменению ее скорости во времени. Ускорение - величина векторная, характеризующая быстроту изменения скорости по ее величине и направлению в данный момент (мгновенное ускорение).Вектор ускорения можно разложить на составляющие: касательное ускорение, направленное вдоль касательной к траектории в данной точке и нормальное ускорение, направленное перпендикулярно к вектору скорости внутрь кривизны. Касательное ускорение будет положительным, когда скорость точки увеличивается, и отрицательным, когда она уменьшается. Если касательное ускорение равно нулю, то скорость по величине постоянная. Если нормальное ускорение равно нулю, то направление скорости постоянное.Угловое ускорение тела определяется как мера быстроты изменения его угловой скорости. Оно равно первой производной по времени от угловой скорости тела.Различают ускорение тела линейное (в поступательном движении) и угловое (во вращательном движении). Отношение линейного ускорения каждой точки вращающегося тела к ее радиусу равно угловому ускорению в радианах в секунду в квадрате. Оно одинаково для всех точек вращающегося тела, кроме лежащих на оси.Значит, линейное ускорение любой точки вращающегося тела равно по величине его угловому ускорению, умноженному на радиус вращения этой точки.Ускорение системы тел, изменяющей свою конфигурацию, определяется еще сложнее, чем скорость. Ускорение служит хорошим показателем качества приложенных усилий.
11. Инерционные характеристики тела человека: масса и момент инерции тела, радиус инерции инерционные характеристикиСвойство инертности тел раскрывается в первом законе Ньютона:«Всякое тело сохраняет свое состояние покоя или равномерного ипрямолинейного движения до тех пор, пока внешние приложенные силы,не изменят это состояние». Иначе говоря, всякое тело сохраняет скорость, пока ее не изменяв силы. Понятие об инертности Любые тела сохраняют скорость неизменной при отсутствии внешних воздействий одинаково. Это свойство, не имеющее меры, и предлагается называть инерцией 1 . Разные тела изменяют скорость под действием сил по-разному. Это их свойство, следовательно, имеет меру: его называют инертностью. Именно инертность и представляет интерес, когда надо оценить, как изменяется скорость.Инертность — свойство физических тел, проявляющееся в постепенном изменении скорости с течением времени под действием сил.Сохранение скорости неизменной (движение как бы по инерции) в реальных условиях возможно только тогда, когда все внешние силы, приложенные к телу, взаимно уравновешены. В остальных случаях неуравновешенные внешние силы изменяют скорость тела в соответствии с мерой его нертности. Масса телаМасса тела — это мера инертности тела при поступательном движении. Она измеряется отношением величины приложенной силы к вызываемому ею ускорению:Измерение массы тела здесь основано на втором законе Ньютона: «Изменение движения прямо пропорционально извне действующей силе и происходит по тому направлению, по которому эта сила приложена».Масса тела зависит от количества вещества тела и характеризует его свойство — как именно приложенная сила может изменить его движение. Одна и та же сила вызовет большее ускорение у тела с меньшей массой, чем у тела с большей массой 1 .При исследовании движений часто бывает необходимо учитывать не только величину массы, но и как говорится, ее распределение в теле. На распределение материальных точек в теле указывает местоположение центра масс тела. В абсолютно твердом теле имеются три точки, положения которых совпадают: центр масс, центр инерции и центр тяжести. Однако это совершенно различные понятия. В ЦМ пересекаются направления сил, любая из которых вызывает поступательное движение тела.Момент инерции телаМомент инерции тела — это мера инертности тела при вращательном движении. Момент инерции тела относительно оси равен сумме произведений масс всех материальных точек тела на квадраты их расстояний от данной оси:В деформирующейся системе тел, когда ее части отдаляются от оси вращения, момент инерции системы увеличивается. Инерционное сопротивление увеличивается с отдалением частей тела от оси вращения пропорционально квадрату расстояния. Поскольку материальные точки в теле расположены на разных расстояниях от оси вращения, для ряда задач удобно вводить понятие «радиус инерции».Радиус инерции тела — это сравнительная мера инертности данного тела относительно его разных осей. Он измеряется корнем квадратным из отношения момента инерции (относительно данной оси) к массе тела:Найдя опытным путем момент инерции тела, можно рассчитать радиус инерции ( R ин), величина которого характеризует распределение материальных точек в теле относительно данной оси.Знать о моменте инерции очень важно для понимания движения, хотя точное количественное определение этой величины в конкретных случаях нередко затруднено.
Изменение скорости движения тел происходит под действием сил. Другими словами сила является не причиной движения, а причиной изменения движения. Силовые характеристики раскрывают связь действия силы с изменением движений. К силовым характеристикам припоступательном движении относятся:
Сила (F) – мера механического действия одного тела на другое. Сила определяется формулой: F=ma, где m – масса тела; a– ускорение.
Импульс силы (S) – мера воздействия силы на тело за промежуток времени. Эта механическая характеристика равна произведению силы на промежуток времени. Импульс силы характеризует площадь под кривой «время – сила» (рис. 3.2).
Рис. 3.2. Импульс силы характеризует площадь под кривой «время-сила» (Р. Энока, 1998)
Значение импульса силы отталкивания не зависит от формы кривой «время-сила», а определяется только площадью под кривой. Зарегистрировать силу давления на опору позволяет методика тензодинамометрии. При этом характер кривой давления на опору зависит от уровня развития скоростно-силовых качеств спортсмена. Спортсмен, обладающий высоким уровнем развития скоростно-силовых качеств мышц ног способен развить высокий уровень силы за короткий промежуток времени.
13 Количество движений. Кинетический момент. Закон сохранения количества движений.
Импульс тела (количество движения, Q) – векторная величина, характеризующая его способность передаваться другому телу. Импульс тела определяется по формуле: Q = mV.
Импульс тела имеет то же направление, что и скорость. Если тело покоится, его импульс равен нулю. При взаимодействии тел их импульсы могут быть переданы от одного тела к другому. Например, в результате взаимодействия тела человека с опорой изменяется импульс тела (количество движения тела). Чем больший импульс приобретает тело человека в результате взаимодействия с опорой, тем выше или дальше будет прыжок.
К силовым характеристикам при вращательном движении относятся:
Момент силы (М) – векторная величина, мера механического действия одного тела на другое при вращательном движении. Момент силы определяется по формуле: M= Fh, где h – плечо силы.
Плечо силы – перпендикуляр, опущенный из оси вращения на линию действия силы.
Костные звенья в организме человека представляют собой рычаги. При этом результат действия мышцы определяется не столько развиваемой ею силой, сколько моментом силы. Особенностью строения опорно-двигательного аппарата человека является небольшие значения плеч сил тяги мышц. В то же время внешняя сила, например, сила тяжести, имеет большое плечо (рис. 3.3). Поэтому для противодействия большим внешним моментам сил мышцы должны развивать большую силу тяги.
Рис. 3.3. Особенности работы скелетных мышц человека
Момент силы считают положительным, если сила вызывает поворот тела против часовой стрелки, и отрицательным, при повороте тела по часовой стрелке. На рис. 3.3. сила тяжести гантели создает отрицательный момент силы, так как стремится повернуть предплечье в локтевом суставе по часовой стрелке. Сила тяги мышц-сгибателей предплечья создает положительный момент, так как стремится повернуть предплечье в локтевом суставе против часовой стрелки.
Импульс момента силы (Sм) – мера воздействия момента силы относительно данной оси за промежуток времени.
Кинетический момент (К) &‐ векторная величина, мера вращательного движения тела, характеризующая его способность передаваться другому телу в виде механического движения. Кинетический момент определяется по формуле: K=Jω.
Кинетический момент при вращательном движении является аналогом импульса тела (количества движения) при поступательном движении.
Пример. При выполнении прыжка в воду после выполнения отталкивания от мостика, кинетический момент тела человека (К) остается неизменным. Поэтому если уменьшить момент инерции (J), то есть произвести группировку, увеличивается угловая скорость ω.Перед входом в воду, спортсмен увеличивает момент инерции (выпрямляется), тем самым он уменьшает угловую скорость вращения. Закон сохранения количества движения системы гласит: «Если на систему не действуют никакие внешние силы, то количество движения системы остается постоянным (сохраняется)».
14. Энергитическая характеристика: работа силы, работа силы трения, работа силы тяжести, энергия упругой диформации.
К энергетическим характеристикам относятся:
Работа силы
Часто надо знать действие силы не во времени, а на каком-то участке пути. Например, при толкании ядра важна длина пути, на котором проявляется финальное усилие. Для характеристики действия, оказываемого силой на тело при некотором его перемещении, вводится понятие работы силы.
Работа силы (А) – это мера действия силы на некотором участке перемещения тела под действием этой силы. Численно работа силы равна произведению силы на путь.
Работу производит только та сила, которая вызывает изменение скорости по величине. Работа положительна, если тело ускоряет движение.
Работа силы тяжести равна произведению модуля силы на вертикальное перемещение точки ее приложения: Атяж = Fтяж hтяж.
Работа силы тяжести не зависит от вида траектории, по которой перемещается точка, а зависит лишь от координат тела.
Пример. Для того, чтобы поднять груз силового тренажера, массой m= 20 кг на высоту h= 0,5 м нужно совершить работу (А), равную: А=m g h= 20×9,8×0,5 = 100 Дж.
Если этот груз спортсмен поднимает за тренировку 30 раз, то проделанная им работа будет равна: А= 100 х 30= 3000 Дж.
15 :биокинематические цепи и пары. Замкнутые и не замкнутые цепи
Биомеханические
пары и цепи (незамкнутые, замкнутые, разветвленные). Биомеханическа
В незамкнутых цепях есть конечное свободное звено, входящее в одну пару. В замкнутой цепи каждое звено входит в две пары. Поэтому в незамкнутой цепи возможны изолированные движения в каждом суставе. В замкнутой цепи в движение одновременно вовлекаются все соединения.
Незамкнутая цепь может стать замкнутой, если свободное конечное звено получит связь – замкнется «на себя» или «на опору».
16.Степени
свободы и связи в
Если у физического тела нет никаких ограничений, оно может двигаться в пространстве в трех измерениях и вращаться вокруг трех осей. Такое тело имеет 6 степеней свободы. Каждая связь уменьшает число степеней свободы. Фиксация одной точки свободного тела лишает его трех степеней свободы (линейных перемещений вдоль осей координат). Закрепление двух точек оставляет одну степень свободы – вращение вокруг продольной оси тела.
Почти во всех суставах тела человека (кроме межфаланговых, лучелоктевых и атлантоосевого), степеней свободы больше, чем одна. Это обусловливает неопределенность движений, множество возможностей движений («неполносвязный механизм»).
Управляющие воздействия мышц создают дополнительные связи и оставляют для движения только одну степень свободы. Это превращает тело в «полносвязный механизм».
17. Звенья тела как рычаги и маятники. Основу биокинематической цепи составляют кости – твердые негибкие звенья. Костные рычаги (звенья тела подвижно соединенные в суставах) под действием приложенных сил могут либо сохранять свое положение, либо изменять его. Костные рычаги служат для передачи работы и движения на расстояние. Силы, действующие на рычаг можно объединить в две группы. 1. Силы или их составляющие, лежащие в плоскости оси рычаг, не влияют на вращение вокруг этой оси. 2. Силы или их составляющие, лежащие в плоскости перпендикулярной оси рычага, могут рассматриваться как силы движущие и как силы сопротивления (тормозящие).
Каждый рычаг имеет
следующие элементы: точку опоры «О», точки
приложения сил, плечи рычага (L) – расстояния
от точки опоры до точек приложения сил,
плечи сил (d) – расстояния от точки опоры
до линии действия сил (перпендикуляры,
опущенные из точки опоры на линии действия
сил). Fн – нормальная (перпендикулярная
к направлению движения рычага в данной
точке) составляющая силы F. Fт – тангенциальная (касательная
к направлению движения рычага в данной
точке) составляющая силы F.
18. элементы биомеханических рычагов. Рычаги в биокинематических цепях. Мерой действия силы на рычаг служит ее момент относительно точки опоры: M= Fd.
По характеру расположения оси вращения, точек приложения равнодействующей сил сопротивления (P), и движущих сил (F) различают костные рычаги трех видов:
А – рычаг первого рода (двуплечий). Б – рычаг второго рода (одноплечий), рычаг силы. В – рычаг третьего рода (одноплечий), рычаг скорости.
В теле человека практически все рычаги – это рычаги третьего рада. Исключение составляют голова, таз в положении основной стойки и стопа – рычаги первого рода.
Условия равновесия и ускорения костных рычагов. Если противоположные относительно оси сустава моменты сил равны, звено сохраняет свое положение, либо продолжает свое движение с прежней скоростью. Но если один из моментов сил больше другого, звено получает ускорение в направлении его действия. В реальных условиях равновесие встречается редко, поэтому движения выполняются с ускорением (замедлением).
Во всех движениях угол между направлением равнодействующей силы и осью звена (рычага) меняется. Плечо рычага при этом постоянно, а плечо силы меняется, меняется и сама сила. Большинство рычагов в теле человека – это рычаги скорости, работающие с проигрышем в силе. Этот проигрыш возникает по трем основным причинам: прикрепление мышцы вблизи сустава; тяга мышцы не под прямым, а под острым или тупым углом к оси рычага; напряжение мышц-антагонистов.