Метаболизм этанола в печени

Автор работы: Пользователь скрыл имя, 13 Декабря 2012 в 12:25, реферат

Описание работы

Основную роль в метаболизме этанола играет цинксодержащий NAD+- зависимый фермент - алкогольдегидрогеназа, локализующаяся в основном в цитозоле и митохондриях печени (95%). В ходе реакции происходит дегидрирование этанола, образуются ацетальдегид и восстановленный кофермент NADH. 631. Метаболизм этанола. 1 - окисление этанола NAD+ - зависимой алкогольдегидрогеназой (АДГ); 2 - МЭОС - микросомальная этанолокисляющая сисгема; 3 - окисление этанола каталазой.

Файлы: 1 файл

Молекулярные механизмы алкоголизма.docx

— 81.33 Кб (Скачать файл)

В условиях хронического воздействия  этанолом в мембранах возникают  адаптивные изменения: увеличивается  содержание холестерина, изменяется структура  фосфолипидного слоя и снижается  текучесть (повышается ригидность) мембран. Последнее сопровождается усилением активного трансмембранного транспорта Na+ в результате увеличения числа переносчиков и возрастания их сродства к Na+, а также стабилизации внутри- и внеклеточного обмена Ca++. Все это сопровождается изменением режима функционирования фиксированных на мембранах ферментных, рецепторных, иммунных и иных комплексов, ведет к развитию толерантности к этанолу и другим наркотическим веществам алифатического ряда (феномен перекрестной толерантности) и к снижению выраженности кардиодепрессивного действия этанола

Последствия адаптивного повышения  ригидности мембран до конца не ясны. Очевидно, однако, что более эффективное  функционирование таких мембран  в присутствии этанола определяет развитие ряда негативных эффектов при  его отсутствии. Так, например, увеличение активности Na+,K+–АТФазы повышает потребление кислорода клетками, снижая тем самым их устойчивость к действию дополнительных патогенных факторов (гипоксия, инфекции и др.). При синдроме отмены этанола повышенная активность этой АТФазы ведет к нару-шению внутриклеточного баланса Na+, что влечет за собой повышенный выброс катехоламинов из синаптосом, а также значительные изменения активности Са++-АТФазы, кальмодулина, аденилатциклазы и других ферментов в мозге и других органах.  
 
Конформационное действие. Этанол обладает способностью непосредственно влиять на конформацию белковых молекул (прежде всего контрактиль-ных белков), нарушая их способность к функционированию. Именно этим определяется способность этанола снижать силу сердечных сокращений. Кардиодепрессивный эффект этанола проявляется при употреблении его в дозах, вызывающих тяжелую интоксикацию. Алкоголь при концентрациях в крови 4,5 г/л и выше снижает максимальную скорость нарастания, амплитуду и продолжительность потенциала действия кардиомиоцитов. Сходное действие оказывают и другие спирты (метанол, бутанол, пентанол). Указанный эффект связан пре-имущественно с подавлением входящего тока кальция, а слабая деполяризация сарколемальной мембраны обусловлена снижением быстрого входящего тока натрия. Другие эффекты (подавление активности Mg++,Ca++-АТФазы сарколемы и митохондрий, подавление захвата и связывания Ca++ микросомами, угнетение активного транспорта K. и др.), выявляемые в модельных системах при действии этанола в сверхвысоких концентрациях, в реальной жизни маловероятны.

Этерификация жирных кислот. Прямое токсическое действие этанола на митохондрии обусловлено его  способностью метаболизироваться в тканях, прежде всего в миокарде, с образованием эфиров жирных кислот. Этанол при участии цитоплазматической эстеразы взаимодействует с длинноцепочными жирными кислотами, в основном, пальмитиновой, олеиновой и линолевой, с образованием их эфиров. Способность эфиров этих кислот удерживаться в связанном с белками состоянии значительно ниже, чем у неэтерифицированных жирных кислот. Последнее обеспечивает их массивное поступление в митохондрии с последующей деэтерификацией, где вновь образованные жирные кислоты реализуют свой токсический эффект. Скорость синтеза этиловых эфиров жир-ных кислот весьма высока (около 40 нМ/г в час), а их содержание в тканях сердца у лиц, погибших в состоянии острой алкогольной интоксикации, увеличено в 3–4 раза. Механизм токсического действия эфиров жирных кислот определяется их способностью ингибировать Na+,К+-АТФазу, угнетать дыхание ми-тохондрий, активировать перекисное окисление липидов в мембранах митохон-дрий и разобщать окисление и фосфорилирование. Избыточное накопление жирных кислот в тканях при алкогольной интоксикации и нарушение их утили-зации тканями из-за конкурентного влияния ацетата создает дополнительные благоприятные условия для их взаимодействия с этанолом.  
 
Опосредованное токсическое действие этанола определяется каскадом метаболических расстройств, возникающих при его окислении, а также токсическими эффектами ацетальдегида и продуктов его метаболизма.  
 
Метаболическое действие. Исключительно важной особенностью этилового спирта, отличающей его от других ПАВ, в том числе и от средств для наркоза алифатического ряда, является его способность выступать в качестве пищевого субстрата. Его энергетическая ценность составляет 7,1 ккал/г. При систематическом употреблении алкоголя в количествах, не превышающих 5–10% энергети-ческой ценности пищевого рациона, он не оказывает влияния или увеличивает уровень энергопоступлений, способствуя увеличению массы тела. При употреблении алкоголя в больших количествах (до 50% от общей энергетической цен-ности пищевого рациона у больных алкоголизмом) значительно снижается поступление в организм различных пищевых веществ, в том числе белков, витаминов, микроэлементов и других нутриентов, что ведет к развитию парциальной пищевой недостаточности. На фоне последней токсические эффекты алкоголя и его метаболитов усиливаются.  
 
Поступающий в организм этанол почти полностью подвергается биотрансформации. В неизмененном виде выводится менее 5% принятого алкоголя. Окисление алкоголя протекает в основном в цитоплазме гепатоцитов (от 80% до 90%). Остальная часть поступившего в организм алкоголя подвергается биотрансформации в других тканях и органах (легкие, почки, эндотелий сосудов и др.). Окисление осуществляется при участии алкогольдегидрогеназной (АДГ) и, в меньшей степени, микросомальной и каталазной систем с образованием аце-тальдегида. Скорость окисления этанола после его однократного приема составляет примерно 100 мг/кг/час для мужчин и 85 мг/кг/час для женщин. Незначительная часть (менее 10%) образовавшегося ацетальдегида поступает в кровоток. При употреблении алкоголя в дозе 1 г/кг (пиковая концентрация эта-нола в крови – около 1,0 г/л) ацетальдегид обнаруживается в крови на протяже-нии 3-х часов в концентрациях 0,0001 – 0,001 г/л. При увеличении нагрузки ал-коголем поступление ацетальдегида в кровь возрастает. Ацетальдегид обладает способностью угнетать дыхательную цепь митохондрий на участке между пи-ридиннуклеотидами и флавопротеидами и вызывать торможение всех оксили-тельно-восстановительных процессов в митохондриях, что приводит к накоплению недоокисленных продуктов и нарушению аккумуляции АТФ в реакциях окислительного фосфорилирования.  
 
Около 90% ацетальдегида подвергается дальнейшему окислению по месту его образования до ацетата при участии митохондриальной и, в меньшей степени, цитоплазматической альдегиддегидрогеназы (АлДГ). В итоге 70–80% поступившего в организм человека этанола превращается в свободный ацетат. При-мерно 25% образовавшегося ацетата утилизируется в печени, около 70% – в экстрапеченочных тканях и лишь незначительная часть выделяется с мочой. Нагрузка алкоголем закономерно сопровождается увеличением уровня ацетата в крови, а его содержание в крови коррелирует с содержанием этанола. В печени и периферических тканях ацетат трансформируется в активную форму ацетил-КоА, который включается в цикл трикарбоновых кислот, где участвует в процессе окислительного фосфорилирования, а также используется в процессах биологического синтеза. Однако в печени ацетат, образующийся из ацетальдегида, включается в обменные процессы за счет затраты энергии АТФ. В результате происходит значительная деэнергизация внутримитохондриального матрикса и уменьшение фонда свободного HS-KoA. Дефицит последнего тормозит процессы окисления углеводов и жирных кислот, поставляющих восстановительные эквиваленты в дыхательную цепь митохондрий, где потребляется ки-слород и образуется АТФ (именно эта АТФ используется для всех видов функциональных и синтетических процессов в гепатоцитах).  
 
Нарушение энергетических процессов связано также с повышенным образованием в условиях алкогольной интоксикации аммиака, который отвлекает 2-оксиглутарат из цикла Кребса. Митохондрии в связи с этим испытывают дефицит в сукцинате – наиболее мощном энергетическом источнике среди всех субстратов цикла трикарбоновых кислот.  
 
Метаболизм этанола в печени, протекающий по дегидрогеназному пути, сопровождается значительным уменьшением уровня окисленной и увеличением уровня восстановленной формы приридиннуклеотидов (снижение отношения НАД/НАДН), что сопровождается ослаблением других окислительно-восстановительных процессов, осуществляемых при участии НАД (метаболизм углеводов, триглицеридов, жирных кислот, гормонов, разного рода процессы биологического синтеза и т.д.), и ведет к развитию гиперпротонемии. Измене-ние отношения НАД/НАДН в печени широко распространяется и на другие клеточные системы и органы. Последнее связано, прежде всего, с увеличением отношения лактат/пируват и нарастанием концентрации глицерол-3-фосфата. Снижение стационарной концентрации пирувата сопровождается угнетением глюконеогенеза из ряда субстратов. Все это ведет к истощению запасов гликогена в печени, гипогликемии (вплоть до гипогликемической комы), развитию метаболического ацидоза и нарушению обмена липидов в печени (накопление триглицеридов).  
 
Резюмируя вышеизложенное, следует отметить, что при алкогольной интоксикации развивается состояние, обнаруживающее большое сходство с таковым при гипоксии разного генеза. Как и при гипоксических состояниях, при острой и хронической алкогольной интоксикации возникает каскад вторичных метаболических реакций и расстройств. Например, гиперлактатемия при систе-матическом злоупотреблении алкоголем является причиной задержки в организме мочевой кислоты, развития урикемии, накопления мочевой кислоты в тканях суставов и возникновения приступов подагры.  
 
Еще одно событие, чреватое рядом патологических последствий, прежде всего, некомпенсированным ацидозом, нарушением обмена одновалентных и двухвалентных ионов и значительным ухудшением общего состояния больных, связано с увеличением в крови уровня кетоновых тел (ацетон, ацетоацетат и бета-оксибутират). Необходимо отметить, что кетоз относится к числу довольно редких явлений и развивается лишь при сахарном диабете, патологии беременности, длительном голодании и проведении тетурамотерапии. Механизм формирования гиперкетонемии при алкогольной интоксикации определяется следующими событиями: повышенным липолизом в жировой ткани и значительным увеличением уровня свободных жирных кислот в крови вследствие активации симпатоадреналовой системы; торможением бета-окисления жирных кислот в печени в результате ингибирующего влияния ацетальдегида на ферменты цикла Кребса, что сопровождается образованием избытка ацетил-КоА и деацилированием его с образованием ацетоацетата; укоренным восстановлением ацетоацетата в бета-оксибутират и частичным декарбоксилированием последнего с образованием ацетона.

Прямое конформационное действие ацетальдегида. Ацетальдегид, благодаря  высокой реакционной способности  своей карбонильной группы, почти  лишен возможности существовать в биологических средах в свободном  виде. Его способность к прямому, неферментативному взаимодействию распространяется прежде всего на белки и определяется возможностью вступать к ковалентное взаимодействие с их амино- и сульфгидрильными группами. При этом возникают относительно неустойчивые связи (меркаптополуацеталь, основания Шиффа), которые через непродолжительный промежуток времени становятся необратимыми. Вступая во взаимодействие со структурными и функциональными белками плазмы и форменных элементов крови, клеточных элементов эн-дотелия сосудов и других тканей, ацетальдегид нарушает их структурную организацию и функциональную активность. Около 20% поступающего из печени в кровь ацетальдегида связывается белками плазмы. В крови больных алкоголизмом обнаруживаются парные соединения ацетальдегида с валином, лизином, гликолизированным лизином, тирозином. Ацетальдегид взаимодействует с белковыми факторами свертывающей системы крови, нарушая их функциональную активность. Не менее 15% циркулирующего ацетальдегида связано с гемоглобином. Ацетальдегидные аддукты гемоглобина стабильны (полупериод жизни 5,5 дней) и обладают малым сродством к кислороду. Предполагается, что активация аллергических и аутоиммунных реакций при алкоголизме связана с иммунным ответом организма на продукты взаимодействия ацетальдегида с белковыми структурами крови, печени и других тканей.  
 
Заслуживают особого внимания факты, свидетельствующие о взаимодействии ацетальдегида с пептидными гормонами, биогенными аминами и регуляторными аминокислотами. Мет-энкефалин, лей-энкефалин, бета-эндорфин и другие сходные пептиды связываются с ацетальдегидом по свободной амино-группе и образуют производные с циклической структурой типа имидазолидона, утрачивая свою специфическую активность. Дофамин и норадреналин, взаимодействуя с ацетальдегидом, образуют алкалоидоподобные соединения – тетрагидроизохинолины. Наибольший интерес представляют два производных – сальсолинол и метилсальсолинол, которые, как предполагается, причастны к формированию зависимости от алкоголя. Содержание тетрагидроизохинолинов в мозге больных алкоголизмом увеличено, а содержание сальсолинола четко коррелирует с уровнем дофамина. Тетраизохинолины, как и другие нейротрансмиттеры, участвуют в разного рода нейрохимических процессах (активный захват, депонирование, выброс, взаимодействие с рецепторными структурами), конкурируют с естественными нейромедиаторами, подавляют активность некоторых ферментов (тирозингидроксилаза, дофаминдекарбоксилаза) и вызы-вают снижение уровня кальция в головном мозге. Другая группа алкалоидов образуется при взаимодействии ацетальдегида с производными триптофана и триптамина. Она включает тетрагидро-бета-карболины, дигидро-бета-карболины и бета-карболины, которые широко представлены в природе как компоненты некоторых растений, продукты пиролиза и естественные метаболиты в тканях животных и человека. Содержание бета-карболинов в тканях человека увеличивается при алкогольной интоксикации. Эти соединения обладают выраженной фармакологической, прежде всего психотропной активностью (галлюциногенное действие). Механизм их действия связан со способностью угнетать активность моноаминооксидазы А-типа, уменьшать связывание 5-окситриптамина в мозге и выступать в качестве естественных лигандов бензо-диазепиновых и опиатных рецепторов.  
 
Необходимо добавить, что способность ацетальдегида к прямому конформационному действию лежит в основе его стимулирующего влияния на процесс высвобождения биогенных аминов из надпочечников и нервных терминалей периферического отдела симпатоадреналовой системы, а также гормонов из некоторых желез внутренней секреции. Благодаря такой способности, ацетальдегид, образующийся при острой алкогольной интоксикации и постинтоксикационном алкогольном синдроме, оказывает мощное воздействие на функционирование секреторного звена нейрогуморальной и эндокринной сис-тем регуляции, вызывая стрессоподобную активацию симпатоадреналовой сис-темы и каскад вторичных нарушений в деятельности ряда органов и систем.  
 
Прямое угнетающее влияние ацетальдегида на процессы белкового син-теза. В экспериментах на клеточных культурах, изолированных органах и целостном организме установлено, что ацетальдегид обладает способностью специфично ингибировать синтез клеточных и секреторных белков печени, сердца, скелетных и гладких мышц, селезенки, поджелудочной железы и других органов. Этанол обладает аналогичной способностью, однако этот его эффект проявляется только при высоких, не совместимых с жизнью концентрациях этанола в биологических жидкостях. Установлено, что хроническая алкогольная интоксикация приводит к уменьшению синтеза белка в сердце на 15–20% с преиму-щественным нарушением процесса включения аминокислот в короткоцепочные белки миокарда. Угнетение механизмов белкового синтеза при хронической алкогольной интоксикации ведет, прежде всего, к нарушению белковосинтетических процессов в печени (снижение уровней альбумина, глобулина, факторов свертывающей системы крови и др.), нарушению процессов тканевой репарации и развитию дистрофических процессов в разных органах (головной мозг, серд-це, скелетные мышцы).  
 
Оксидативный стресс. Нельзя обойти вниманием и типовой патологический процесс, разворачивающийся на фоне алкогольной интоксикации, – активацию перекисного окисления липидов мембран. Начальным моментом развития окислительного стресса при алкогольной интоксикации, как и при действии других патогенных факторов, является снижение стационарной концентрации активных форм липидных антиоксидантов, прежде всего витамина Е, а также селена и цинка, являющихся компонентами глутатионпероксидазы и супероксиддисмутазы. В условиях мощной мобилизации свободных жирных кислот при алкогольной интоксикации ацетат конкурентно вытесняет последние из процесса митохондриального окисления. Более того, ацетат и ацетальдегид оказывают прямое ингибирующее влияние на активность бета-окисления жирных кислот. Одновременно происходит активация ацил-КоАоксидазы в пероксисомах, представляющая собой компенсаторную реакцию в ответ на подавление митохондриального окисления липидов. В итоге скорость митохондриального окисления липидов снижается и активируется шунтирующий метаболический путь – пероксисомальное окисление жирных кислот, при котором генерируется значительное количество супероксидных ионов, запускающих цепную реакцию перекисного окисления липидов мембран. Накоплены весомые аргументы в пользу того, что повышенное образование свободных радикалов при алкогольной интоксикации может быть связано с аутоокислением катехоламинов, продукция которых резко возрастает при синдроме отмены этанола, а также с метаболиз-мом ацетальдегида при участии ксантиноксидазы.  
 
Описанные выше механизмы прямого и опосредованного токсического действия этилового спирта можно отнести к категории первичных. Они провоцируют развитие множественных вторичных изменений на клеточном, органном и системном уровнях, определяя специфику психотропного действия этанола, его влияние на систему нейрогуморальной и эндокринной регуляции, а также формирование патологических процессов, разворачивающихся в различных органах и тканях.


Информация о работе Метаболизм этанола в печени