Автор работы: Пользователь скрыл имя, 10 Января 2014 в 14:17, реферат
Гипоксия — состояние кислородного голодания как всего организма в целом, так и отдельных органов и тканей, вызванное различными факторами: задержкой дыхания, болезненными состояниями, малым содержанием кислорода в атмосфере. Вследствие гипоксии в жизненно важных органах развиваются необратимые изменения. Наиболее чувствительными к кислородной недостаточности являются центральная нервная система, мышца сердца, ткани почек, печени. Может вызывать появление необъяснимого чувства эйфории, приводит к головокружениям, низкому мышечному тонусу.
Понятие о гипоксии
Молекулярно-клеточные механизмы гипоксии
Адаптация к гипоксии
Общая характеристика адаптации к гипоксии
Экстренная адаптация к гипоксии
Адаптация к гипоксии со стороны кровообращения
Реакции долговременной адаптации организма к гипоксии
ГOСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ
КАФЕДРА ПАТОЛОГИЧЕСКОЙ ФИЗИОЛОГИИ
Молекулярно-клеточные
Выпoлнила:
Студентка курса
факультета
группы
Прoверила:
Вoлгoград 2013
Содержание:
Гипоксия (др. греч — под, внизу и лат. oxygenium —
кислород) — состояние кислородного голодан
Молекулярно-клеточные
Как известно динамика формирования
структурных и функциональных сдвигов
в различных органах и тканях при гипоксии
определяются в значительной мере темпами
ее развития, локализацией патологии,
характером этиологических факторов,
инициирующих гипоксию, и особенностями
компенсаторно-
В соответствии с данными литературы устойчивость тканей различных органов и систем к гипоксии широко варьируют. Наиболее чувствительной к гипоксии является нервная система: при полном прекращении кровотока признаки повреждения коры головного мозга обнаруживаются через несколько секунд. Снижение потребления кислорода на 20% структурами головного мозга вызывает потерю сознания. Через 5-6 мин. аноксии головного мозга возникают глубокие структурные изменения нейронов, а в продолговатом мозге - через 10-15 мин.
В сердечной мышце мелкие очаги некроза появляются через 3-5 мин. с момента развития ишемии, а крупноочаговый инфаркт миокарда формируется уже спустя 20-30 мин.
Недостаток кислорода в тканях
приводит, прежде всего, к дефициту
макроэргических соединений, образуемых
в сопряженных с окислительно-
Основным энергетическим субстратом для нервной системы, а также для клеток других органов и тканей, является глюкоза. Между тем, при нормальной оксигенации миокарда основным источником его энергетического обеспечения являются высшие жирные кислоты. Так, при окислении 1 молекулы пальмитиновой кислоты образуется 130 М АТФ. В условиях ишемии миокарда усиливается конкурентное ингибирование использования жирных кислот лактатом, что приводит к значительному снижению энергообеспечения миокарда. Так, в процессе анаэробных гликолитических реакций энергетический выход на 1 молекулу глюкозы составляет 2 М АТФ.
В то же время известно, что на каждую
молекулу глюкозы, претерпевающую полное
окисление до СО2 и воды в миокарде,
печени, почках, т.е. в органах, где
функционирует малат-
Вышеизложенное
Одним из метаболических признаков гипоксии и соответственно недостаточности энергообеспечения нервной ткани, а также миокарда является снижение уровня креатинфосфата (КФ), выполняющего роль не только резервного источника макроэргических фосфатных связей, но и обеспечивающего их транспорт в клетках к местам энергетических трат. Так, уже через несколько секунд мозговая ткань теряет около 70% КФ, а через 40-45 сек. КФ полностью исчезает. Почти одновременно падает уровень АТФ, увеличивается концентрация продуктов распада, так называемых метаболитов изнашивания - АДФ, АМФ, НФ, что приводит к увеличению потенциала фосфорилирования, предоставляющего собой отношение:
АДФ + АМФ+НФ
АТФ
Как известно, процессы ресинтеза АТФ
в митохондриях тесно связаны не только
с окислительно-
Скорость гликолиза в условиях нормы согласована со скоростью функционирования цикла лимонной кислоты: ни пируват, ни лактат, ни ацетил-СоА обычно не накапливаются в клетках при нормальной оксигенации тканей. Согласованность между скоростью гликолиза и метаболизмом субстратов в цикле Кребса объясняется тем, что АТФ и НАД-Н являются общими компонентами для тех и других реакций. В то же время высокие концентрации АТФ и НАД-Н ингибируют реакции гликолиза. Продукт первой стадии цикла лимонной кислоты - цитрат является аллостерическим ингибитором ключевого фермента гликолиза – фосфофруктокиназы.
Таким образом, в условиях гипоксии, в случаях увеличения потенциала фосфорилирования, возникает активация ключевого фермента гликолиза - фосфофруктокиназы (ФФК) и соответственно возрастание пропускной способности реакции анаэробного гликолиза. При этом резко снижается запас гликогена в сердце, мозге, печени, почках, мышцах и других тканях и соответственно накапливаются продукты гликолитических реакций - молочная и пировиноградная кислоты.
Касаясь значения активации ключевого
фермента гликолиза - ФФК в условиях
гипоксии, необходимо отметить достаточно
быструю трансформацию реакций
адаптации в реакции
Так активация ФФК на начальных этапах ишемического или гипоксического повреждения клеток приводит к усилению мобилизации гликогена, несколько улучшает энергообеспечение тканей. При этом истощаются запасы гликогена, усиливается ацидоз, приводящий на пике своего развития к подавлению ФФК, и соответственно полной блокаде энергообеспечения клетки.
Развитие метаболического
Что касается окисления жирных кислот в митохондриях и их роли в энергетическом обеспечении тканей, в частности, миокарда, следует отметить две главных стадии. На первой стадии происходит последовательное отщепление двууглеродных фрагментов (в виде ацетил-СоА) от карбоксильного конца цепи жирной кислоты в результате цикла ферментативных реакций. При завершении таких 7 циклов в превращениях 16 - углеродной цепи пальмитиновой кислоты образуется 8 двууглеродных фрагментов в форме ацетил-СоА. На второй стадии окисления жирных кислот ацетильные остатки ацетил-СоА окисляются через цикл лимонной кислоты до СО2 и воды в митохондриях.
На обеих стадиях окисления жирных кислот атомы водорода или соответствующие им электроны передаются по митохондриальной цепи переноса электронов на кислород. С этим потоком электронов сопряжен процесс окислительного фосфорилирования АДФ до АТФ. Следовательно, в условиях гипоксии различного генеза блокируются процессы окисления жирных кислот в тканях, в избытке накапливаются кислые продукты, формируется метаболический ацидоз и соответственно развиваются дефицит АТФ, подавление всех энергозависимых реакций.
Как известно, большую часть метаболической энергии, вырабатываемой в тканях, поставляют процессы окисления углеводов и триацилглицеридов (в среднем 90% всей энергии). Лишь 10-15% энергии поставляется в процессе окисления аминокислот. Если аминокислоты, высвобождающиеся при обычном динамическом обновлении белков не используются для синтеза новых белков, то они подвергаются окислительному расщеплению. В случаях нарушения утилизации глюкозы возникает усиление катаболизма белков, при этом аминокислоты теряют свои аминогруппы, превращаются в α -кетокислоты. Последние в условиях нормальной оксигенации тканей вовлекаются в цикл Кребса с образованием СО2 и воды. Естественно, что в условиях гипоксии, когда нарушаются окислительно-восстановительные реакции в цикле Кребса, развитие метаболического ацидоза усугубляется и за счет избыточного накопления в тканях аминокислот, α-кетокислот.
Касаясь функциональной значимости метаболического ацидоза, закономерно развивающегося при гипоксии различного генеза, следует отметить ряд последующих неспецифических метаболических и функциональных расстройств, представляющих собой динамическую трансформацию реакций адаптации в реакции дезадаптации.
Как известно, типовой реакцией тучных клеток и тромбоцитов на развитие гипоксии и ацидоза является их дегрануляция с избыточным освобождением в окружающую среду высокоактивных соединений - гистамина, серотонина, ФАТ, ФХЭ, ФХН, лейкотриенов, интерлейкинов. В свою очередь, избыточное накопление ионов водорода, биологически активных соединений приводит к резкому увеличению проницаемости биологических мембран за счет структурных переходов в белках и липидах, и активации процессов свободно-радикального окисления.
Таким образом, среди механизмов, приводящих к повреждению биологических мембран при гипоксии различного генеза, необходимо выделить следующие:
1) развитие метаболического
2) выброс вазоактивных соединений тучными клетками,
3) активацию процессов
4) высвобождение лизосомальных гидролаз при дезорганизации лизосомальных мембран с последующим усугублением метаболических сдвигов.
Адаптация к гипоксии
• При действии даже умеренной гипоксии сразу формируется поведенческая реакция, направленная на поиск среды существования, оптимально обеспечивающей уровень биологического окисления. Человек может направленно менять условия жизнедеятельности с целью устранения состояния гипоксии.
• Возникшая гипоксия служит системообразующим фактором: в организме формируется динамичная функциональная система по достижению и поддержанию оптимального уровня биологического окисления в клетках.
- Система реализует свои
- В структуру системы входят лёгкие, сердце, сосудистая система, кровь, системы биологического окисления и регуляторные системы.
Условно адаптивные реакции подразделены на две группы: экстренной адаптации и долговременной адаптации.
Механизмы экстренной адаптации к гипоксии:
• Причина активации механизмов срочной
адаптации организма к гипоксии: недостаточность
биологического окисления. Как следствие
в тканях снижается содержание АТФ, необходимой
для обеспечения оптимальной жизнедеятельности
.
• Ключевой
фактор процесса экстренной адаптации
организма к гипоксии — активация механизмов
транспорта 02 и субстратов обмена веществ
к тканям и органам. Эти механизмы предсуществуют
в каждом организме. В связи с этим они
активируются сразу (экстренно, срочно)
при возникновении гипоксии и снижении
эффективности биологического окисления.
• Повышенное функционирование систем транспорта кислорода и субстратов метаболизма к клеткам сопровождается интенсивным расходом энергии и субстратов обмена веществ. Таким образом, эти механизмы имеют высокую «энергетическую и субстратную цену». Именно это является (или может стать) лимитирующим фактором уровня и длительности гиперфункционирования.
Следует также отметить, что гипоксия сопровождается рефлекторным раскрытием нефункционирующих в интактном организме капилляров (усиление коллатерального кровообращения), что улучшает кровоснабжение тканей.
Несомненно, для адаптации к гипоксии имеют значение и своеобразные свойства молекулы гемоглобина, заключающиеся в том, что по мере присоединения кислорода к железу геминовых группировок сродство последних к кислороду увеличивается и окисление четвертого гема происходит в 500 раз быстрее, чем первого, что обуславливает достаточно высокое насыщение гемоглобина кислородом, даже при выраженном снижении напряжения кислорода в плазме легочных капилляров.
Имеется также определенная зависимость сродства гемоглобина к кислороду от активной реакции среды и рСО2 показателей, меняющихся в условиях гипоксии. При смещении рН в кислую сторону сродство гемоглобина к кислороду снижается, и это способствует усилению отдачи последнего тканям.
Информация о работе Молекулярно-клеточные механизмы гипоксии. Адаптация к гипоксии