Автор работы: Пользователь скрыл имя, 11 Мая 2014 в 12:15, реферат
В настоящее время наиболее распространена классификация основных типов гипоксии, предложенная И.Р.Петровым. Она включает: 1) экзогенный тип гипоксии; 2) дыхательный (респираторный) тип гипоксии; 3) сердечно-сосудистый (циркулярный) тип гипоксии; 4) кровяной (гемический) тип гипоксии; 5) тканевой тип гипоксии; 6) смешанный тип гипоксии.
1. Введение…………………………………………………………………………..3
2. Основные типы гипоксии и их происхождение классификация основных типов……………………………………………………………………………………...4
3. Компенсаторно-приспособительные реакции при гипоксии долговременная адаптация …………………………………………………………………………………9
4. Заключение………………………………………………………………………..13
5. Список литературы……………………………………………………………….14
Типичным примером тканевой гипоксии, вызванной специфическими ингибиторами, может служить отравление цианидами. Попадая в организм, CN- весьма активно соединяется с окисленной формой геминфермента (Fe3+), препятствуя окислению цитохрома. Тем самым создается препятствие восстановлению железа дыхательного фермента в двухвалентную форму и переносу кислорода на цитохром. Установлено, что «точкой приложения» действия цианидов служит цитохромоксидаза, представляющая собой звено митохондриальной электронтранспортной цепи: цитохромоксидаза способна непосредственно переносить электроны на кислород. Специфическое подавление активных центров дыхательных ферментов вызывают также ион сульфида (S2), некоторые антибиотики (например, актимицин А) и др. Ингибирование дыхательных ферментов происходит в результате обратимого или необратимого связывания с функциональными группами белковой части молекулы ферментов, играющих важную роль в их каталитической активности. К таким ингибиторам относятся, например, ионы тяжелых металлов (Сu2+, Hg2+, Ag2+), обратимо соединяющиеся с SH-группами остатков цистеина, в результате чего образуются меркаптиды.
Показано, что при всем разнообразии заболеваний и патологических процессов, сопровождающихся тканевой гипоксией, имеется сравнительно мало молекулярных механизмов нарушений клеточных мембран. К ним относятся свободнорадикальное (перекисное) окисление ненасыщенных жирных кислот в фосфолипидах мембран, связывание белков поверхностью мембран и конформационные изменения белков, действие избытка Са2+. Наиболее универсальное значение в настоящее время придается свободнорадикальному повреждению мембран.
Смешанный тип гипоксии наблюдается наиболее часто, представляя собой сочетание двух или более основных типов гипоксии. Механизм смешанных форм гипоксии связан с тем, что первично возникающая гипоксия любого типа по достижении определенной степени неизбежно вызывает нарушения функции различных органов и систем, участвующих в обеспечении доставки в организм кислорода и его утилизации. Так, при значительной степени гипоксии, вызванной недостаточностью внешнего дыхания, страдает функция кардиовазомоторного центра, проводящей системы сердца, снижается сократительная способность миокарда, нарушается проницаемость сосудистых стенок, происходит дезорганизация мембранных структур клеток, нарушается синтез дыхательных ферментов и т.д. Это приводит к нарушениям кровоснабжения тканей и снижению усвоения ими кислорода, в результате чего к первичному респираторному типу гипоксии присоединяется циркуляторный и тканевый. Подобные явления наблюдаются при травматических и других видах шока, коматозных состояниях различного происхождения и т.д. Практически любое тяжелое гипоксическое состояние имеет смешанный характер.
Изменения паренхиматозных органов при гипоксии проявляются исчезновением гликогена, возникновением различного вида дистрофий, некроза. Резко нарушается структура ядра, митохондрий, гранулярного и агранулярного ретикулума. В межклеточном пространстве обнаруживаются отек, мукоидное или фибри-ноидное набухание вплоть до фибриноидного некроза. Чувствительность различных органов и тканей к гипоксии колеблется в широких пределах. Некоторые ткани, например, кости, хрящи, сухожилия, относительно малочувствительны к гипоксии и могут сохранять нормальную структуру и жизнеспособность в течение многих часов при полном прекращении снабжения кислородом. Поперечнополосатые мышцы «выдерживают» аналогичную ситуацию около 2 ч, сердечная мышца -- 20--30 мин, почки, печень - примерно столько же. Наиболее чувствительна к гипоксии нервная система.
Компенсаторно-
При действии на организм гипоксических факторов немедленно после начала такого воздействия возникают приспособительные реакции, направленные на устранение возникшего энергетического голодания. Активируется сложная по структуре система обеспечения нормального биологического окисления в тканях, включающая механизмы транспорта и утилизации кислорода. Наряду с активацией деятельности данных систем происходит снижение функциональной активности, а следовательно, энергозатрат и потребления кислорода в тканях, органах и физиологических системах, непосредственно не участвующих в экстренном обеспечении организма кислородом (пищеварительная, выделительная, иммунная, половая и др.). Приспособительные реакции внешнего дыхания на гипоксию выражаются в увеличении альвеолярной вентиляции за счет углубления и/или учащения дыхательных экскурсий и мобилизации резервных альвеол. Эти реакции возникают рефлекторно благодаря раздражению хеморецепторов аортально-каротидной зоны и ствола мозга под влиянием изменившегося газового состава крови. Увеличение вентиляции сопровождается усилением легочного кровообращения, повышением перфузионного давления в капиллярах легких и возрастанием проницаемости альвеолярно-капиллярных мембран для газов. В условиях тяжелой гипоксии дыхательный центр может становиться практически ареактивным по отношению к любым внешним регуляторным влияниям -- как возбуждающим, так и тормозным. В критических ситуациях происходит переход на автономный максимально экономичный для нейронов дыхательного центра режим деятельности по критерию расхода энергии на единицу объема вентиляции. Приспособительные реакции кровообращения на гипоксию проявляются тахикардией, увеличением ударного и минутного объема сердца. Последний может возрастать до 35--40 л вместо 4--5 л в состоянии покоя. Возрастают масса циркулирующей крови за счет опорожнения кровяных депо, скорость кровотока и системное артериальное давление и возникают перераспределительные реакции, обеспечивающие преимущественное кровоснабжение прежде всего мозга и сердца. При глубокой гипоксии сердце может, подобно дыхательному центру, в значительной степени освободиться от внешней регуляции и перейти на автономную деятельность. Конкретные параметры последней определяются метаболическим статусом и функциональными возможностями проводящей системы, кардиомиоцитов и других структурных компонентов сердца. Функциональная изоляция сердца в условиях тяжелой гипоксии, аналогично дыхательной системе, является крайней формой адаптации в критическом состоянии, способной в течение некоторого времени поддерживать необходимый для жизни коронарный и мозговой кровоток.
Важным компенсаторно-
У всех живых существ при длительном или повторном воздействии, вызывающем защитно-приспособительные реакции, возникают изменения, повышающие устойчивость организма к воздействию данного фактора. Такие изменения получили название долговременной адаптации. Характерной особенностью адаптированного к какому-либо агенту организма является то, что последний способен сохранять нормальную жизнедеятельность при воздействии данного фактора такой интенсивности, которая у неадаптированного организма вызывает явные нарушения или даже гибель. Продолжительная тренировка физической нагрузкой позволяет спортсмену развивать значительно большее напряжение или совершать больший объем работы, чем до тренировки. Длительное попадание в организм яда может делать организм устойчивым к такой дозе данного вещества, которая является смертельной для неадаптированного организма.
Долговременная адаптация может проявляться на всех уровнях жизнедеятельности -- от метаболического до организменного. При длительном введении яда возрастает мощность метаболических механизмов, обеспечивающих связывание и разрушение яда. При тренировке физической нагрузкой возрастает число ультраструктур в усиленно работающих мышцах, последние подвергаются гипертрофии. Наблюдаются также стойкие изменения свойств различных структур, например митохондрий, приобретающих повышенную эффективность биологического окисления, или рецепторов, изменяющих свою чувствительность. Большое значение могут иметь повышение устойчивости нервных связей и приобретение новых временных (условно-рефлекторных) связей.
Долговременная адаптация - сложный процесс, при котором изменяются отношения между системами: в тех или иных системах, которые определяют приспособление, увеличивается масса субклеточных структур, а в системах, не участвующих в приспособлении, может возникать противоположное явление -атрофия.
Важным проявлением долговременной адаптации к гипоксии является повышение устойчивости нейронов высших отделов мозга к дефициту кислорода. Несмотря на действие тяжелой гипоксии, у адаптированных человека и животных длительное время сохраняются разнообразные временные связи и высокая двигательная активность, они могут осуществлять адекватное поведение при большей степени гипоксии, чем неадаптированные. При долговременной адаптации обнаружена гипертрофия ганглионарных симпатических нейронов, а в сердце -- повышенная плотность симпатических нервных волокон и возрастание их числа на единицу массы.
Адаптационное изменение свойств организма происходит не сразу, а постепенно. Сформированная долговременная адаптация при продолжающемся воздействии вызвавшего ее фактора может сохраняться в течение некоторого времени и после прекращения тренирующих воздействий. Однако в конечном итоге возникшие в организме изменения обязательно редуцируются. Если организм вновь будет подвергаться действию того же фактора, долговременная адаптация к нему может сформироваться повторно. Способность организма совершенствовать свои реакции и свойства при повторяющихся воздействиях факторов окружающей среды выработана в процессе эволюции и представлена в той или иной степени у всех видов живых существ. Вместе с тем сами эти изменения, формируемые у отдельных индивидов под влиянием факторов окружающей среды, не передаются по наследству, хотя они довольно часто являются весьма устойчивыми и существенно изменяют весь облик организма, его фенотип. Поэтому такую долговременную адаптацию называют фенотипической адаптацией.
Адаптационный процесс, развивающийся при длительном или повторном действии на организм гипоксии, включает в себя ряд стадий, сменяющих друг друга. Первой стадией долговременной адаптации к гипоксии является экстренная адаптация, начинающаяся с момента первоначального воздействия на организм гипоксического агента. В этой стадии организм использует механизмы, направленные на сохранение достаточной эффективности биологического окисления в тканях путем стимуляции соответствующих физиологических систем. Кроме гиперфункции данных систем, для стадии срочной адаптации характерно развитие стрессорной реакции. Сущность ее состоит в активации симпатико-адреналовой системы и системы АКТГ - глюкокортикоиды, которые мобилизуют энергетические и пластические ресурсы организма «в пользу» органов и систем, обеспечивающих срочную адаптацию.
Если действие агента, вызвавшего реакции срочной адаптации к гипоксии, продолжается или периодически повторяется в течение достаточно длительного времени, происходит постепенный переход от экстренной к долговременной адаптации организма. Эта, вторая, стадия получила название переходной. Переходная стадия является весьма важным этапом развития адаптационного процесса, поскольку именно в это время организм начинает приобретать повышенную устойчивость к гипоксии.
В случае продолжения или повторения действия гипоксии, которая становится уже тренирующим агентом, в организме формируется третья стадия -- устойчивая долговременная адаптация. Она означает, что организм может нормально осуществлять различные формы деятельности (вплоть до высших) в таких условиях, которые ранее этого «не позволяли».
В том случае, если тренирующее гипоксическое воздействие сразу (или постепенно) прекращается, долговременная адаптация к такому воздействию утрачивается. Как и во время развития адаптации, ее утрата происходит постепенно, составляя 4-ю, завершающую, стадию адаптационного процесса. Эта стадия получила название деадаптации. В процессе последней происходит «обратное развитие» тех структурных изменений, которые обеспечивали повышенную устойчивость организма в периоде долговременной адаптации: уменьшается до нормы число гиперплазированных внутриклеточных структур, гипертрофированные мышцы вновь приобретают свои обычные размеры и т. д. Если воздействие патогенного фактора и связанная с ним гипоксия длятся слишком долго, неуклонно нарастают и учащаются, защитные силы организма начинают постепенно истощаться, и в конце концов происходит «срыв» долговременной адаптации и наступает явление, называемое декомпенсацией. Последняя сопровождается нарастанием деструктивных изменений органов и соответствующими функциональными нарушениями.
гипоксия жизнедеятельность энергообеспечение
Заключение
Таким образом, гипоксия - это типовой патологический процесс, возникающий вследствие кислородного голодания клеток и ведущий к деструктивным изменениям в тканях.
Гипоксия возникает или за счет нарушения доставки кислорода к тканям или в результате нарушений его утилизации дыхательными системами клеток.
Периодический дефицит кислорода - это эволюционно древний фактор, к которому у человека сформировалась многогранная адаптивная реакция. Она направлена на повышение мощности системы транспорта и утилизации кислорода в ответ на умеренную гипоксию. Умеренная гипоксия порождает нормальную адаптивную физиологическую реакцию организма и является одним из важнейших стимулов его развития. напротив, при тяжелой гипоксии адаптивные реакции мене выражены, преобладают глубокие диструктивные изменения. Именно тяжелая гипоксия является тем патогенным фактором, который может играть важную роль в развитии повреждения при многих заболеваниях.
Таким образом, в развитии гипоксии можно
условно выделить две стадии. Первоначально,
благодаря компенсаторно-
В настоящее время гипоксия остается одной из ключевых проблем теоретической и практической медицины. Знания о механизмах развития гипоксических состояний, а также адаптации к ним организма существенно расширились и углубились, появились новые теоретические подходы и методы изучения гипоксии на разных уровнях жизнедеятельности -- молекулярном, субклеточном, клеточном, тканевом, органном, системном. Возникли новые направления в учении о гипоксических состояниях, например такие, как высокогорная, спортивная, авиационная, космическая, подводная медицина и др. На этой основе развивается клиническая патология гипоксических состояний, формирующая новые принципы и методы их диагностики, профилактики и терапии.