Обмен углеводов. Основные углеводы тканей животных, их строение и биологическая роль. Углеводы структурно-функциональных компонентов кл

Автор работы: Пользователь скрыл имя, 21 Ноября 2012 в 20:35, реферат

Описание работы

Органические соединения составляют в среднем 20-30 % массы клетки живого организма. К ним относятся биологические полимеры: белки, нуклеиновые кислоты, углеводы, а также жиры и ряд небольших молекул-гормонов, пигментов, АТФ и пр. В различные типы клеток входит неодинаковое количество органических соединений.

Содержание работы

I. Введение
II. Углеводы. Строение углеводов.
а) Моносахариды.
б) Дисахариды.
в) Полисахариды.
III. Биологическая роль углеводов.
IV. Заключение
V. Литература.

Файлы: 1 файл

Марина.ppt

— 4.78 Мб (Скачать файл)

Государственный Медицинский  Университет  г. Семей 

 

Кафедра: биохимии и химических  дисциплин.

 

 

Тема: Обмен углеводов. Основные углеводы тканей   животных, их строение и биологическая роль. Углеводы структурно-функциональных компонентов клетки.

 

Выполнила: Лизунова Марина

Факультет: ОМФ

Группа : 203

 

Семей-2010

 

СРС

I. Введение

II. Углеводы. Строение углеводов.

  а) Моносахариды.

  б) Дисахариды.

  в) Полисахариды.

III. Биологическая роль углеводов.

IV. Заключение

V. Литература.

Введение.

 

  Органические соединения составляют в среднем 20-30 % массы клетки живого организма. К ним относятся биологические полимеры: белки, нуклеиновые кислоты, углеводы, а также жиры и ряд небольших молекул-гормонов, пигментов, АТФ и пр. В различные типы клеток входит неодинаковое количество органических соединений. В растительных клетках преобладают сложные углеводы-полисахариды, в животных - больше белков и жиров. Тем не менее, каждая из групп органических веществ в любом типе клеток выполняет сходные функции: обеспечивает энергией, является строительным материалом.

 

Углеводы.

 

       Углеводы - органические соединения, состоящие из одной или многих молекул простых сахаров. Молярная масса углеводов колеблется в пределах от 100 до 1000000 Да (Дальтон-масса, приблизительно равная массе одного атома водорода). Их общую формулу обычно записывают в виде Cn(H2O)n (где n - не меньше трех). Впервые в 1844 г. этот термин ввел отечественный ученый К. Шмид (1822-1894). Название «углеводы» возникло на основании анализа первых известных представителей этой группы соединений.

 

       Оказалось, что эти вещества состоят из углерода, водорода и кислорода, причем соотношение числа атомов водорода и кислорода у них такое же, как и в воде: на два атома водорода - один атом кислорода. Таким образом, их рассматривали как соединение углерода с водой. В дальнейшем стало известно много углеводов, не отвечающих этому условию, однако название «углеводы» до сих пор остается общепринятым. В животной клетке углеводы находятся в количестве, не превышающем 2-5 %. Наиболее богаты углеводами растительные клетки, где их содержание в некоторых случаях достигает 90 % сухой массы (например, в клубнях картофеля, семенах).

Строение углеводов.

 

         Углеводы служат основным источником энергии. Свыше 56% энергии организм получает за счет углеводов, остальную часть - за счет белков и жиров.

  В зависимости от сложности строения, растворимости, быстроты усвоения углеводы пищевых продуктов подразделяются на простые углеводы: моносахариды (глюкоза, фруктоза, галактоза), дисахариды (сахароза, лактоза) и сложные углеводы, или полисахариды (крахмал, гликоген, клетчатка).

 

 

Моносахариды.

 

         Моносахариды - производные многоатомных спиртов, содержащие карбонильную группу. В зависимости от положения в молекуле карбонильной группы моносахариды подразделяют на альдозы и кетозы.

         Альдозы содержат функциональную альдегидную группу -НС=О, тогда как кетозы содержат кетонную группу >С=О. Название моносахарида зависит от числа составляющих его углеродных атомов, например альдотриозы, кетотриозы, альдогексозы, кетогексозы и т.д.

         Моносахариды по строению можно отнести к простым углеводам, так как они не гидролизуются при переваривании, в отличие от сложных, которые при гидролизе распадаются с образованием простых углеводов.

         В организме животных и человека содержатся глюкоза, галактоза и некоторые представители пентоз ( рибоза дезоксирибоза и др.).

 

Глюкоза.

 

          Глюкоза является альдогексозой. Она может существовать в линейной и циклической формах. Циклическая форма глюкозы, предпочтительная в термодинамическом отношении, обусловливает химические свойства глюкозы. Как и все гексозы, глюкоза имеет 4 асимметричных углеродных атома, обусловливающих наличие стереоизомеров. Возможно образование 16 стереоизомеров, наиболее важные из которых D- и L-глюкоза. Эти типы изомеров зеркально отображают друг друга.

         

      Расположение Н- и ОН- групп относительно пятого углеродного атома определяет принадлежность глюкозы к D- или L-ряду. В организме млекопитающих моносахариды находятся в D-конфигурации, так как к этой форме глюкозы специфичны ферменты, катализирующие её превращения. В растворе при образовании циклической формы моносахарида образуются ещё 2 изомера (α- и β-изомеры), называемые аномерами, обозначающие определённую конформацию Н- и ОН-групп относительно углерода. У α-D-глюкозы ОН-группа располагается ниже плоскости кольца, а у β-D-глюкозы, наоборот, над плоскостью кольца.

 

 Таутомерное равновесие D-глюкозы

           Галактоза.

 

    Галактоза — один из простых сахаров. Отличается от глюкозы пространственным расположением водородной и гидроксильной групп у 4-го углеродного атома. Содержится в животных и растительных организмах, в том числе в некоторых микроорганизмах. Входит в состав молочного сахара. При окислении образует галактоновую, галактуроновую и слизевую кислоты. Хорошо растворима в воде.

 

     Галактоза в природе не встречается. Она производится при расщеплении дисахарида лактозы – углевода животного происхождения, который содержится в молоке и молочных продуктах. В печени галактоза перерабатывается в более универсальный источник энергии глюкозу. А остатки нерасщепленной лактозы служат пищей для полезной микрофлоры желудочно-кишечного тракта.

 

Дисахариды.

 

      Дисахариды- сложные сахара, каждая молекула которых при гидролизе распадается на две молекулы моносахаридов. Дисахариды наряду с полисахаридами являются одним из основных источников углеводов в пище человека и животных. Среди дисахаридов особенно широко известны мальтоза, лактоза и сахароза.

Сахароза.

 

         Сахароза - дисахарид, состоящий из α-D-глюкозы и β-D-фруктозы, соединённых α,β-1,2-гликозидной связью. В сахарозе обе аномерные ОН-группы остатков глюкозы и фруктозы участвуют в образовании гликозидной связи. Следовательно, сахароза не относится к восстанавливающим сахарам. Сахароза - растворимый дисахарид со сладким вкусом. Источником сахарозы служат растения, особенно сахарная свёкла, сахарный тростник. Последнее объясняет возникновение тривиального названия сахарозы - "тростниковый сахар".

 

Лактоза.

 

       Лактоза - молочный сахар; важнейший дисахарид молока млекопитающих. В коровьем молоке содержится до 5% лактозы, в женском молоке - до 8%. В лактозе аномерная ОН-группа первого углеродного атома остатка D-галактозы связана β-гликозидной связью с четвёртым углеродным атомом D-глюкозы (β-1,4-связь). Поскольку аномерный атом углерода остатка глюкозы не участвует в образовании гликозидной связи, следовательно, лактоза относится к восстанавливающим сахарам.

 

       Лактоза – молочный сахар, углевод животного происхождения, состоящий из галактозы и глюкозы. Чтобы расщепить лактозу, требуется специальный фермент лактаза. Если организм ее не вырабатывает, наступает непереносимость молока и молочных продуктов.

 

Мальтоза.

 

       Мальтоза поступает с продуктами, содержащими частично гидролизованный крахмал, например, солод, пиво. Мальтоза также образуется при расщеплении крахмала в кишечнике. Мальтоза состоит из двух остатков D-глюкозы, соединённых α-1,4-гликозидной связью.

 

Полисахариды.

 

       Полисахариды (гликаны), полимерные углеводы, молекулы которых построены из моносахаридных остатков, соединенных гликозидными связями.

        В пище человека в основном содержатся полисахариды растительного происхождения - крахмал, целлюлоза. В меньшем количестве поступает полисахарид животных - гликоген.

 

Крахмал.

 

       Крахмал - наиболее важный углеводный компонент пищевого рациона. Это резервный полисахарид растений, содержащийся в наибольшем количестве (до 45% от массы сухого вещества) в зёрнах злаков (пшеница, кукуруза, рис и др.), а также луковицах, стеблях и клубнях растений (в картофеле примерно 65%). Крахмал - разветвлённый полисахарид, состоящий из остатков глюкозы (гомогликан). Он находится в клетках растений в виде гранул, практически нерастворим в воде.

        Крахмал состоит из амилозы и амилопектина. Амилоза - неразветвлённый полисахарид, включающий 200-300 остатков глюкозы, связанных α-1,4-гликозидной связью

  Благодаря α-конфигурации глюкозного остатка, полисахаридная цепь имеет конформацию спирали. Синяя окраска при добавлении йода к раствору крахмала обусловлена наличием такой спирали.            Амилопектин имеет разветвлённую структуру. В местах ветвления остатки глюкозы соединены α-1,6-гликозидными связями. Линейные участки содержат примерно 20-25 остатков глюкозы. При этом формируется древовидная структура, в которой имеется лишь одна аномерная ОН-группа.

  Крахмал - высокомолекулярное соединение, включающее сотни тысяч остатков глюкозы. Его молекулярная масса составляет порядка 105-108 Д.

 

       Крахмал представляет собой смесь линейного (амилозы) и разветвленного (амилопектина) полисахаридов. Амилоза построена главным образом из остатков a-D-глюкопиранозы с 1:4 - связями. В зависимости от вида растения мол. м. амилозы колеблется от 150 тыс. (рисовый, кукурузный крахмал) до 500 тыс. (картофельный крахмал). Молекулы амилопектина сильно разветвлены и состоят из фрагментов амилозы (около 20 моносахаридных остатков), связанных между собой а-1:6-связями. Мол. м. 106-109. В структуре амилопектина различают центральную цепь с количеством звеньев более 60, несущую остаток глюкозы со свободной восстанавливающей группой, короткие цепи из 15-20 остатков (S-цепи), расположенные на периферии молекулы и внутри нее, и длинные (около 45 звеньев) L-цепи. По строению амилопектин близок к гликогену. В воде амилопектин, также как амилоза, образует мицеллярные растворы.  

Целлюлоза.

 

          Целлюлоза (франц. cellulose, от лат. cellula, букв. комнатка, здесь - клетка), полисахарид - линейный -глюкан (поли глюкопиранозил-D-глюкопираноза) общая формула [С6Н7О2(ОН)3]n. Один из наиболее распространенных биополимеров, входящий в состав клеточных стенок растений и микроорганизмов (некоторые из них, а также отдельные виды беспозвоночных - черви, древоточцы благодаря ферменту целлюлозе, расщепляющему целлюлозу, могут ее усваивать).

      Целлюлоза - линейный полисахарид гомогликан, построенный из остатков глюкозы, соединённых между собой β-1,4-гликозидными связями. Пищеварительная система человека не имеет ферментов, гидролизующих β-связи в полисахаридах. Поэтому целлюлоза - неиспользуемый углевод, но этот пищевой компонент необходим для нормального протекания переваривания.

 

Гликоген.

 

Гликоген - полисахарид животных и человека. Так же, как крахмал в растениях, гликоген в клетках животных выполняет резервную функцию, но, так как в пище содержится лишь небольшое количество гликогена, он не имеет пищевого значения.

Гликоген представляет собой  структурный аналог крахмала, но  имеет большую степень ветвления: примерно на каждые 10 остатков  глюкозы приходится одна α-1,6-гликозидная  связь.

Гликоген в организме используется в качестве энергетического материала для питания работающих мышц, органов и систем.

 

Структура гликогена. 

            Гликоген, т. е. сахар образующее вещество, представляет углевод формулы С6Н10О5 встречающееся в животном теле в преимущественно в печени здоровых, упитанных животных; кроме того, гликоген встречается в мышцах, белых кровяных тельцах, в ворсинках околоплодной оболочки и во всех почти образованьях, способных к развитию. Особенное обилие гликогена в тканях наблюдается в зародышевом периоде жизни позвоночных животных; тело это найдено и у беспозвоночных (устриц, улиток) и в грибах. Извлеченный из тканей, главным образом из печени, гликоген представляет белый аморфный порошок; водные растворы его вращают плоскость поляризации вправо и окрашиваются йодом не в синий, как это получается с обыкновенным растительным крахмалом, а в красные цвет. Под влиянием диастатического фермента, птиалина слюны, гликоген, подобно растительному крахмалу, превращается в декстрин, мальтозу и под конец в виноградный сахар.

          В печени голодающих животных гликоген обыкновенно не находят и он образуется в организме животных, главным образом, из углеводов пищи, т. е. крахмала, виноградного и тростникового сахара; но не подлежит сомнению, что откармливание голодавших животных исключительно мясной пищей, по возможности, литерной жира и углеводов, тоже ведет к отложению гликогена в печени. Белковые вещества могут, следовательно, перерабатываться в живых организмах так, что одним из продуктов превращения может являться углевод, т. е. крахмалу или сахару подобное вещество, а другим - азотсодержащее органическое вещество, например, мочевина. Только предшественником сахара является во всех случаях гликоген, который затем при помощи фермента превращается в виноградный сахар.

         Нарушение обмена гликогена приводит к заболеваниям (гликогенозам), связанным с накоплением его в больших количествах в организме (главным образом в печени и сердце) или образованием молекул с отклонениями в строении.

 

 

 

Биологическая роль углеводов.

 

         Обширный наиболее распространенный на Земле класс органических соединений, входящих в состав всех организмов и необходимых для жизнедеятельности человека и животных, растений и микроорганизмов. Углеводы являются первичными продуктами фотосинтеза, в кругообороте углерода они служат своеобразным мостом между неорганическими и органическими соединениями. Углеводы и их производные во всех живых клетках выполняют роль пластического и структурного материала, поставщика энергии, субстратов и регуляторов для специфических биохимических процессов. В ротовой полости при участии гидролитических ферментов слюны начинается переваривание углеводов. В желудке продолжается гидролиз углеводов ферментами слюны. В двенадцати перстной кишке под действием сока поджелудочной железы полисахариды пищи (крахмал, гликоген и др.) и сахара (олигосахариды и дисахариды) расщепляются при участии a -глюкозидазы и других глюкозидаз до моносахаридов, которые и всасываются в из тонкой кишки в кровь.

Информация о работе Обмен углеводов. Основные углеводы тканей животных, их строение и биологическая роль. Углеводы структурно-функциональных компонентов кл