Патология клеточного ядра

Автор работы: Пользователь скрыл имя, 28 Ноября 2014 в 17:41, реферат

Описание работы

Функции органоидов не строго детерминированы, так как они могут участвовать в различных внутриклеточных процессах. Более специализированы метаплазматические образования клетки, выполняющие частные функции: тонофибриллы, выполняющие опорную функцию клетки; миофибриллы, осуществляющие сокращение клетки и способствующие ее движению; микроворсинки, щеточная каемка, участвующие в процессах всасывания; десмосомы, обеспечивающие клеточные контакты, и т.д.

Содержание работы

Введение………………………………………………………………2
Патология клеточного ядра……………………………………………………..3
Структура и размеры ядрышек……………………………6
Ядерные включения…………………………………………7
Ядерная оболочка…………………………………………...8
Патология митоза………………………………………………………9
Хромосомные аберрации и хромосомные болезни……10
Патология цитоплазмы……………………………………………….11
Изменения гранулярной эндоплазматической сети и рибосом..15
Изменения структуры, размеров, формы и числа митохондрий..20
Митохондриальный транспорт кальция и повреждение клетки………………………………………………………………..22
Дестабилизация мембран лизосом и патология клетки…………23
Нарушения функций лизосом и наследственные болезни………………………………………………………………24
Лизосомы и липопигменты………………………………….24
Изменения числа и структуры микротелец, их нуклеоидов и матрикса………………………………………………………………….25
Пероксисомные болезни…………………………………….26
Микрофиламенты……………………………………………..27
Промежуточные филаменты………………………………...28
Микротрубочки………………………………………………….29
Плазматическая мембрана ……………..……………………30
Нарушение проницаемости плазматической мембраны и состояние клетки…………………………………………..…………31
Список литературы……………………………………………………….32

Файлы: 1 файл

Патология клетки.docx

— 1.01 Мб (Скачать файл)

Изменения крист митохондрий

Изменения крист митохондрий, как и самих митохондрий, могут касаться также их структуры, размеров, формы и числа.

 

Структурные изменения разнообразны: пластинчатые кристы появляются при усилении активности митохондрий. Деформация и агрегация крист встречаются при понижении этой активности. Форма крист также отражает повышенную или пониженную активность митохондрий. Размеры крист, как правило, соответствуют размерам митохондрий: гигантские кристы в гигантских митохондриях, редукция крист при редукции митохондрий. В такой же мере и число крист отражает активность митохондрий: увеличение числа крист митохондрий - свидетельство возрастающих функциональных потребностей клетки; уменьшение числа крист (редукция) митохондрий - свидетельство снижения этих потребностей.

Митохондриальный транспорт кальция и повреждение клетки

Одной из важных функций митохондрий является транспорт кальция. Кальций может накапливаться митохондриями в весьма значительных количествах, особенно параллельно с неорганическим фосфатом. Высвобождение кальция из митохондрий происходит двумя путями. Один из путей накопления кальция (митохондрии клеток сердца, мозга, скелетных мышц, экзокринных и эндокринных желез) стимулируется натрием и, видимо, представляет собой обмен Са2+ на Na+; другой путь (митохондрии клеток почек, печени, легких) нечувствителен к натрию, механизм его неясен.

Морфологическим подтверждением транспорта кальция митохондриями является обнаружение в митохондриальном матриксе электронноплотных гранул диаметром 20-50 нм, которые, возможно, служат местом аккумуляции двухвалентных ионов. Увеличение размера, плотности и числа этих гранул обнаружено не только при обработке тканей высокими концентрациями Са2+, но и в интактных клетках тех тканей, которые вовлечены в активный транспорт кальция - остеокластах, остеобластах и др. Та же ситуация обнаружена и при гормонально-обусловленных гиперкальциемиях - кальцинозах. При некоторых болезнях (коронарная болезнь сердца), синдромах (хроническая почечная недостаточность) и патологических состояниях (отравления тиоацетатамидом, папаином, йодоформом и т.д.) клетки отвечают на повреждение появлением в митохондриальном матриксе многочисленных крупных плотных гранул кальция (см. рис. 16). При этом кальцификация митохондрий предшествует некрозу клетки и часто бывает обратимой.

 

Внутримитохондриальная кальцификация может быть связана как с избыточным притоком кальция в клетку вследствие первичного повреждения плазматической мембраны, так и с первичными нарушениями транспорта кальция митохондриями. При первичном повреждении плазматической мембраны избыточный приток кальция в клетку приводит к накоплению его в митохондриях, что «отнимает» энергию АТФ и повреждает саму систему генерации энергии - митохондрии. Первичные нарушения митохондриального транспорта кальция встречаются при заболеваниях скелетных мышц - миопатиях (болезнь Люфта, синдром Кернса-Сайра). При этих болезнях митохондрии, несмотря на высокий уровень эндогенного кальция, могут дополнительно накапливать значительные его количества. В таких случаях можно говорить о «болезнях» нарушенного митохондриального транспорта.

Лизосомы

Лизосомы не только «органы» внутриклеточного пищеварения, о чем говорит их название, но и «убийцы» клетки; они причастны как к фагоцитозу, так и аутофагии. Физиологическая и патологическая активность лизосом зависит в основном от двух факторов: состояния (стабилизации) мембран лизосом и активности их ферментов. Поэтому повреждения клетки, к которым могут быть причастны лизосомы, возникают либо при дестабилизации лизосомных мембран, позволяющей проявиться гидролазной активности

ферментов, либо при лизосомной ферментопатии, ведущей к накоплению в клетке ряда исходных или промежуточных продуктов обмена.

 

 

 

 

            7.Дестабилизация мембран лизосом и патология клетки

К дестабилизации (лабилизации) мембран лизосом могут привести воздействия различных веществ и агентов - лабилизаторов мембран лизосом (например, так называемые провоспалительные гормоны, витамины A, D, К и др.). Выраженным повреждающим мембраны лизосом действием отличаются некоторые микотоксины, различные канцерогенные вещества, фосфолипазы, активаторы и продукты перекисного окисления, двуокись кремния. Дестабилизирующе на мембраны лизосом действуют гипоксия, нарушения кислотноосновного состояния, голодание и белковая недостаточность, изменения гормонального статуса, шок, травмы, обширные оперативные вмешательства. Антагонистами лабилизаторов мембран лизосом являются их стабилизаторы(например, так называемые противовоспалительные гормоны, хлороксин, фенерган, холестерол и др.).

 

В патологических условиях возникают конкурентные взаимоотношения между лабилизаторами и стабилизаторами лизосомных мембран, и, если они в пользу первых, проницаемость мембран становится достаточной для выхода гидролаз в цитоплазму и взаимодействия с субстратом, которым могут стать и субклеточные структуры. Часть клетки или вся клетка погибают. Тот же механизм дестабилизации мембран лизосом имеется при фагоцитозе, когда после контакта первичных лизосом с фагосомами образуются фаголизосомы (рис. 18) и цитолизосомы. Подобный механизм лежит и в основе клеточной аутофагии. Как видно, патология мембран лизосом может определять и патологию фагоцитоза.

       Рис. 18. Фаголизосомы в гепатоцитах. х18 500

Нарушения функций лизосом и наследственные болезни

Среди наследственных болезней, связанных с нарушениями функций лизосом и называющихсялизосомными болезнями, прежде всего следует назвать наследственные лизосомные энзимопатии. Они являются следствием первичной генной мутации и проявляются либо полным блоком синтеза ферментного белка, либо синтезом белковых молекул со сниженной биокаталитической активностью. Дефект (отсутствие) одного или нескольких лизосомных ферментов ведет к накоплению в клетке веществ, которые в норме метаболизируют эти ферменты. Поэтому наследственные лизосомные энзимопатии включены в группу болезней накопления, или тезаурисмозов. Группа наследственных лизосомных энзимопатии достаточно велика. Особенно отчетливо она представлена среди гликогенозов (болезнь Помпе), ганглиозидозов (болезни Тея-Сакса, Сандхофа, ювенильный ганглиозидоз), гепатозов (болезнь Дабина-Джонсона), ожирения (недостаточность липаз адипозоцитов).

Другую группу наследственных болезней, обусловленных нарушением функции лизосом, можно связать с нарушением мембранных взаимодействий органелл клетки, что приводит к образованию гигантских органелл, в том числе гигантских лизосом (рис. 19). Эта группа невелика: синдром Чедиака-Хигаси, так называемая циклическая нейтропения.

 

                                        

 

                                   Лизосомы и липопигменты

Содержимое телолизосом представлено липопигментами, т.е. продуктами, которые энзимы лизосом расщепляют с трудом или вообще не рас-

Рис. 19. Гигантские светлые лизосомы звездчатого ретикулоэндотелиоцита при врожденной недостаточности α-1-антитрипсина. х21 000

щепляют. После растворения лизосомальной мембраны они долгое время находятся в цитоплазме, лишь изредка покидают клетки.

Липопигментами обозначают группу цитоплазматических гранул и включений от желтого до темно-коричневого цвета, содержащих белки и труднорастворимые липиды. Их цвет обусловлен продуктами окисления и полимеризации ненасыщенных жирных кислот. Лизосомное происхождение липопигментов подтверждено биохимически, гистохимически и электронно-микроскопически. Липопигменты делят на липофусцин, встречающийся в паренхиматозных и нервных клетках, и цероид,образующийся в макрофагах (см. Дистрофия).

Микротельца (пероксисомы)

Изменения микротелец, касающиеся их числа и структурных компонентов, встречаются при многих болезнях человека. Будучи вторичными, они отражают нарушения оксидазно-каталазной активности клетки. Но изменения микротелец могут быть и первичными, что позволяет говорить о «пероксисомных болезнях», имеющих характерные клинические проявления первичной каталазной недостаточности.

 

   8.Изменения числа и структуры микротелец, их нуклеоидов и матрикса.  

Увеличение числа пероксисом и повышение каталазной активности в гепатоцитах (рис. 20) и нефроцитах можно вызвать в эксперименте с помощью ряда лекарственных препаратов, обладающих гиполипопротеинемическим действием, а в кардиомиоцитах - при длительной даче этанола. У человека повышение числа пероксисом отмечено в гепатоцитах при вирусном гепатите, лептоспирозе.

 

         Рис. 20. Увеличение количества пероксисом в гепатоцитах. х22 000

Уменьшение числа пероксисом, особенно в гепатоцитах, вызывают в эксперименте с помощью веществ, тормозящих синтез каталаз, или отмены стимуляторов этого синтеза. У человека уменьшение числа пероксисом и снижение синтеза их ферментов наблюдаются в печени при воспалении, а также при опухолевом росте. Значительные дефекты пероксисомной системы, разрушение пероксисом находят при гиперлипидемии и гиперхолестеринемии, причем разрушение пероксисом происходит путем аутолиза или аутофагии.

Нуклеоиды пероксисом разрушаются в эксперименте на животных при введении веществ, уменьшающих липидемию, или после облучения. У человека при одних заболеваниях (гепатоцеребральная дистрофия) происходит деградация нуклеоидов пероксисом, при других (идиопатический холестаз) - новообразование нуклеол в пероксисомах.

Пероксисомный матрикс разрушается у животных при введении им ингибиторов синтеза каталаз. У человека разрушение матрикса пероксисом находят при ишемическом некрозе, вирусном гепатите.

Пероксисомные болезни

Известны три наследственных метаболических расстройства, которые могут рассматриваться какпероксисомные болезни: акаталаземия, цереброгепаторенальный синдром Целлвегера и системная недостаточность карнитина.

При акаталаземии активность каталазы в печени и других органах крайне низка вследствие сниженной ее термостабильности. Единственный клинический синдром этого заболевания - гангренозные изъязвления полости рта.

Цереброгепаторенальный синдром Целлвегера характеризуется отсутствием пероксисом в гепатоцитах; эндоплазматическая сеть их редуцирована, митохондрий мало; цитоплазма заполнена гликогеном и липидами. Каталазная активность печени у этих больных составляет примерно 20% нормы. Результатом недостаточности пероксисом при этом синдроме является нарушение синтеза желчных кислот.

 

Системная недостаточность карнитина клинически характеризуется миопатией с периодическими нарушениями функций печени и головного мозга. Выраженный дефицит карнитина обнаруживается в скелетных мышцах, печени, плазме крови; в мышцах не происходит окисления жирных кислот.

Цитоскелет и патология клетки

«Скелет» клетки выполняет опорную, транспортную, контрактильную и двигательную функции. Он представлен 3 видами филаментов (фибрилл) - микрофиламентами, промежуточными филаментами и микротрубочками - макрофиламентами. Каждый из филаментов, выполняя ряд общих функций клетки, специализирован в отношении преимущественно одной из них - контракции (микрофиламенты), статики (промежуточные филаменты) или движения органелл и транспорта (микротрубочки). Цитоскелет претерпевает различные изменения при многих

болезнях и патологических состояниях, что, естественно, влияет на специализированные функции клетки.

Микрофиламенты

Микрофиламенты имеют прямое отношение к актину и миозину. Актиновые филаменты, как и миозин, обнаружены почти во всех клетках. Для миозина, независимо от того, принадлежит он мышечным или немышечным клеткам, характерна одна способность - обратимо связываться с актиновыми филаментами и катализировать гидролиз АТФ, что требует присутствия самого актина. Количество миозина в мышечных клетках в 50 раз больше по сравнению с немышечными, кроме того, миозиновые филаменты мышечных клеток длиннее и толще, чем филаменты немышечных клеток.

Патология микрофиламентов довольно разнообразна. С их дисфункцией связывают, например, определенные виды холестаза и даже первичный билиарный цирроз. Считают, что циркуляция желчи в печени регулируется микрофиламентозной системой (рис. 21), так как микрофиламенты в большом количестве окружают желчные канальцы и, прикрепляясь к плазматической мембране гепатоцитов, могут влиять на размер просвета желчных канальцев. Показано, что воздействия на микрофиламенты, угнетающие их сократительную способность, ведут к застою желчи. Возможно, что подобный механизм лежит в основе некоторых видов холестаза. Резкое увеличение микрофиламентов находят в эпителии желчных протоков при первичном билиарном циррозе, что может быть причиной нарушения кинетики билиарной системы, холестаза и после-

 

     Рис. 21. Увеличение количества микрофиламентов в эпителиальной клетке желчного протока при холестазе. х20 000

дующего гранулематоза холангиол, характерного для этого заболевания. Однако вопрос о том, первична или вторична аккумуляция микрофиламентов в эпителии билиарной системы при первичном билиарном циррозе, еще не решен. Увеличение количества микрофиламентов описано в клетках злокачественных опухолей, особенно в зонах инвазии опухоли. Микрофиламентозная активность характерна и для ряда репаративных процессов, например для заживления ран.

Микрофиламентозная система служит также секреторным процессам, фагоцитозу и митозу.

Промежуточные филаменты

Промежуточные филаменты достаточно специализированы в зависимости от типа клеток, в которых встречаются: цитокератины находят в эпителиях, скелетин (десмин) - в мышечных клетках, виментин - в мезенхимальных клетках, нейрофиламенты - в клетках центральной и периферической нервной системы, глиальные филаменты - в клетках глии. Однако в клетках одного и того же происхождения могут встречаться промежуточные филаменты разного типа. Так, в гладких мышцах пищеварительной, дыхательной и мочеполовой систем промежуточные филаменты представлены главным образом скелетином, а в гладких мышечных клетках сосудов, как и во многих мезенхимальных клетках, - виментином. В связи с этим понятными становятся функциональные возможности гладких мышечных клеток сосудов (фагоцитоз, фибробластическая трансформация и др.).

С патологией промежуточных филаментов, преимущественно их аккумуляцией, пытаются связать многие патологические процессы: образование алкогольного гиалина (телец Мэллори), нейрофибриллярных сплетений в нервных клетках и сенильных бляшек при старческом слабоумии и болезни Альцгеймера. С аккумуляцией промежуточных филаментов связывают и развитие некоторых форм кардиомиопатии.

Информация о работе Патология клеточного ядра