Радиационная гигиена

Автор работы: Пользователь скрыл имя, 13 Апреля 2014 в 13:15, реферат

Описание работы

Радиационная гигиена это отрасль гигиены, изучающая влияние, ионизирующей радиации на здоровье человека и разрабатывающая меры радиационной защиты. Радиационная гигиена разрабатывает вопросы дозиметрии помещений, оборудования и территории предприятий или учреждений, располагающих источниками ионизирующей радиации; индивидуального дозиметрического контроля работающих на предприятиях и в учреждениях, использующих радиоизотопы, рентгеновские аппараты и гамма установки промышленного и медици

Содержание работы

. Введение
2. Радиоактивное загрязнение
3. Образование радиоактивных отходов, и проблема с их обращением и утилизацией
4. Обеспечения безопасности хранилищ РАО
5. Единицы измерения радиоактивности и доз облучений
6. Биологическое действие ионизирующих излучений и способы защиты от них
7. Список используемой литературы

Файлы: 1 файл

Радиац гигиена.doc

— 99.00 Кб (Скачать файл)

В связи с тем, что одинаковая поглощённая доза различных видов ионизирующего излучения вызывает в единице массы биологической ткани различное биологическое действие, введено понятие эквивалентной дозы (Дэкв), которая определяется как произведение поглощённой дозы на средний коэффициент качества действующих видов ионизирующих излучений.

Коэффициент качества (Ккач) характеризует зависимость неблагоприятных биологических последствий облучения человека от способности ионизирующего излучения различного вида передавать энергию облучаемой среде.

По существу, биологические эффекты, вызываемые любыми ионизирующими излучениями, сравниваются с эффектом от рентгеновского и гамма-излучения.

В качестве единицы измерения эквивалентной дозы в системе СИ принят зиверт (Зв). Зиверт - эквивалентная доза любого вида ионизирующего излучения, поглощённая 1 кг биологической ткани и приносящая такой же биологический эффект (вред), как и поглощённая доза фотонного излучения в 1 Гр. Существует также внесистемная единица эквивалентной дозы ионизирующего излучения - бэр (биологический эквивалент рентгена). При этом соразмерность следующая: Дэкв = Дпогл ·Ккач или 1 Зв = 1 Гр · Ккач; 1 Зв = 100 рад · Ккач = 100 бэр.

 

Таблица 1 - Значения Ккач для разных видов ионизирующего излучения

Вид излучения

Коэффициент качества (Ккач)

Рентгеновское и гамма-излучения

1

Электроны и позитроны, бета-излучение

1

Протоны

10

Нейтроны тепловые

3

Нейтроны быстрые

10

Альфа-частицы и тяжёлые ядра отдачи

20


 

Для оценки эквивалентной дозы, полученной группой людей (персонал объекта народного хозяйства, жители населённого пункта и т.п.), используется понятие коллективная эквивалентная доза (Дэкв.к.) - это средняя для населения доза, умноженная на численность населения (в человеко-зивертах).

Понятие экспозиционная доза (Дэксп) служит для характеристики рентгеновского и гамма-излучения и определяет меру ионизации воздуха под действием этих лучей. Она равна дозе фотонного излучения, при котором в 1 кг атмосферною воздуха возникают ионы, несущие заряд электричества в 1 кулон (Кл).

Соответственно

Дэксп = КЛ/КГ.

Внесистемной единицей экспозиционной дозы рентгеновского и гамма-излучения является рентген (Р).

При этом соразмерность следующая:

1 Р = 2,58 · 10-4 Кл/кг или 1 Кл/кг =3,88 · 103 Р.

Поглощённая, эквивалентная и экспозиционная дозы, отнесённые к единице времени, носят название мощности соответствующих доз.

 

 

5. Биологическое действие ионизирующих излучений и способы защиты от них

Различают два вида эффекта воздействия на организм ионизирующих излучений: соматический и генетический. При соматическом эффекте, негативные последствия проявляются непосредственно у облучаемого, при генетическом - у его потомства.

Соматические эффекты могут быть ранними или отдалёнными. Ранние возникают в период от нескольких минут до 60 суток после облучения. К ним относят покраснение и шелушение кожи, помутнение хрусталика глаза, поражение кроветворной системы, лучевая болезнь, летальный исход. Отдалённые соматические эффекты проявляются через несколько месяцев или лет после облучения в виде стойких изменений кожи, злокачественных новообразований, снижения иммунитета, сокращения продолжительности жизни.

При изучении действия излучения на организм были выявлены следующие особенности:

1. Высокая эффективность поглощённой  энергии, даже малые её количества  могут вызвать глубокие биологические  изменения в организме.

2. Наличие скрытого (инкубационного) периода проявления действия ионизирующих излучений.

3. Действие от малых доз может  суммироваться или накапливаться.

4. Генетический эффект - воздействие  на потомство.

5. Различные органы живого организма  имеют свою чувствительность  к облучению.

6. Не каждый организм (человек) в целом одинаково реагирует на облучение.

7. Облучение зависит от частоты  воздействия. При одной и той  же дозе облучения вредные  последствия будут тем меньше, чем более дробно оно получено  во времени.

Ионизирующее излучение может оказывать влияние на организм как при внешнем (особенно рентгеновское и гамма-излучение), так и при внутреннем (особенно альфа-частицы) облучении. Внутреннее облучение происходит при попадании внутрь организма через лёгкие, кожу и органы пищеварения источников ионизирующего излучения. Внутреннее облучение более опасно, чем внешнее, так как попавшие внутрь источники ИИ подвергают непрерывному облучению ничем не защищённые внутренние органы.

Под действием ионизирующего излучения вода, являющаяся составной частью организма человека, расщепляется, и образуются ионы с разными зарядами. Полученные свободные радикалы и окислители взаимодействуют с молекулами органического вещества ткани, окисляя и разрушая её. Нарушается обмен веществ. Происходят изменения в составе крови - снижается уровень эритроцитов, лейкоцитов, тромбоцитов и нейтрофилов. Поражение органов кроветворения разрушает иммунную систему человека и приводит к инфекционным осложнениям.

Местные поражения характеризуются лучевыми ожогами кожи и слизистых оболочек. При сильных ожогах образуются отёки, пузыри, возможно, отмирание тканей (некрозы).

Смертельные поглощённые дозы для отдельных частей тела следующие:

· голова - 20 Гр;

· нижняя часть живота - 50 Гр;

· грудная клетка - 100 Гр;

· конечности - 200 Гр.

При облучении дозами, в 100-1000 раз превышающую смертельную дозу, человек может погибнуть во время однократного облучения (“смерть под лучом”).

Таблица 2

Биологические нарушения при однократном (до 4-х суток) облучении всего тела человека

Доза облучения, (Гр)

Характер биологических последствий облучения

До 0,25

Видимых нарушений нет

0,25-0,50

Возможны изменения в крови

0,50-1,00

Изменения в крови, трудоспособность нарушена

1 – 2

Лёгкая степень лучевой болезни (выздоровление у 100% пострадавших)

2 – 4

Средняя степень лучевой болезни (выздоровление у 100% пострадавших при условии лечения)

4 – 6

Тяжёлая степень лучевой болезни (выздоровление у 50-80% пострадавших при условии специального лечения)

более 6

Крайне тяжёлая лучевая болезнь (выздоровление у 30-50% пострадавших при условии специального лечения)

6 –10

Переходная форма (исход непредсказуем)

более 10

100%-ный смертельный исход через  несколько суток

100

Смертельный исход через несколько часов

1000

Смертельный исход через несколько минут


 

В зависимости от типа ионизирующего излучения могут быть разные меры защиты:

· уменьшение времени облучения;

· увеличение расстояния до источников ионизирующего излучения;

· ограждение или герметизация источников ионизирующего излучения

· оборудование и устройство защитных средств;

· организация дозиметрического контроля;

· применение мер гигиены и санитарии.

В России на основе рекомендаций Международной комиссии по радиационной защите применяется метод защиты населения нормированием. Разработанные нормы радиационной безопасности учитывают три категории облучаемых лиц:

А - персонал, т.е. лица, постоянно или временно работающие с источниками ионизирующего излучения;

Б - ограниченная часть населения, т.е. лица, непосредственно не занятые на работе с источниками ионизирующих излучений, но по условиям проживания или размещения рабочих мест могущие подвергаться воздействию ионизирующих излучений;

В - всё население.

Предельно допустимая доза - это наибольшее значение индивидуальной эквивалентной дозы за год, которая при равномерном воздействии в течение 50 лет не вызовет в состоянии здоровья персонала неблагоприятных изменений, обнаруживаемых современными методами.

Каждый житель Земли (категория В) на протяжении всей своей жизни ежегодно облучается дозой в среднем 250-400 мбэр. Полученная доза складывается из природных и искусственных источников ионизирующего излучения.

Природные источники дают суммарную годовую дозу примерно 200 мбэр (космос до 30 мбэр, почва до 38 мбэр, радиоактивные элементы в тканях человека до 37 мбэр, газ радон до 80 мбэр и другие источники).

Искусственные источники добавляют ежегодную эквивалентную дозу облучения примерно в 150-200 мбэр (медицинские приборы и исследования порядка 100-150 мбэр, просмотр телевизора около 1-3 мбэр, ТЭЦ на угле до 6 мбэр, последствия испытаний ядерного оружия до 3 мбэр и другие источники).

Всемирной организацией здравоохранения предельно допустимая (безопасная) эквивалентная доза облучения для жителя планеты определена в 35 бэр, при условии её равномерного накопления в течение 70 лет жизни.

Ниже предлагаются рекомендации общего характера по защите от ионизирующего излучения разного типа.

От альфа-частиц можно защититься путём:

1) увеличения расстояния до источников  ионизирующих излучений, т.к. альфа-частицы  имеют небольшой пробег;

2) использования спецодежды и  спецобуви, т.к. проникающая способность  альфа-частиц невысока;

3) исключения попадания источников  альфа-частиц с пищей, водой, воздухом  и через слизистые оболочки, т.е. применение противогазов, масок, очков  и т.п.

В качестве защиты от бета-частиц используют:

1) ограждения (экраны), с учётом  того, что лист алюминия толщиной  несколько миллиметров полностью  поглощает поток бета-частиц;

2) методы и способы, исключающие  попадание источников бета-частиц  внутрь организма.

Защиту от рентгеновского и гамма-излучения необходимо организовывать с учётом того, что эти виды излучения отличаются большой проникающей способностью. Наиболее эффективны следующие мероприятия (как правило, используемые в комплексе):

1) увеличение расстояния до источника излучения;

2) сокращение времени пребывания  в опасной зоне;

3) экранирование источника излучения  материалами с большой плотностью (свинец, бетон и др.);

4) использование защитных сооружений (противорадиационных укрытий, подвалов  и т.п.) для населения;

5) использование индивидуальных  средств защиты органов дыхания, кожных покровов и слизистых  оболочек;

6) дозиметрический контроль внешней  среды и продуктов питания.

При использовании различного рода защитных сооружений следует учитывать, что мощность экспозиционной дозы ионизирующего излучения снижается в соответствии с величиной коэффициента ослабления (Косл).

Таблица 3

Средние значения коэффициента ослабления дозы радиации

Наименование укрытий и транспортных средств или

условия расположения населения (войск)

Косл

Открытое расположение на местности

Заражённые траншеи, канавы, окопы, щели

Вновь отрытые траншеи, канавы, окопы, щели

Перекрытые траншеи, канавы, окопы и т.п.

ТРАНСПОРТНЫЕ СРЕДСТВА

Железнодорожные платформы

Автомобили, автобусы и крытые вагоны

Пассажирские вагоны

Бронетранспортёры

Танки

ПРОМЫШЛЕННЫЕ И АДМИНИСТРАТИВНЫЕ ЗДАНИЯ

Производственные одноэтажные здания (цехи)

Производственные и административные трёхэтажные здания

ЖИЛЫЕ КАМЕННЫЕ ДОМА

Одноэтажные

(подвал)

Двухэтажные

(подвал)

Трёхэтажные

(подвал)

Пятиэтажные

(подвал)

ЖИЛЫЕ ДЕРЕВЯННЫЕ ДОМА

Одноэтажные

(подвал)

1

3

20

50

1,5

2

3

4

10

7

6

10

40

15

100

20

400

27

400

2

7

8

12

8

4

Информация о работе Радиационная гигиена