Автор работы: Пользователь скрыл имя, 21 Февраля 2015 в 11:29, реферат
Все живые организмы обладают биологическими ритмами, которые проявляются в периодическом изменении жизнедеятельности и, как самые точные часы, отмеряют время. Большинство физиологических процессов на протяжении суток повышается в утренние часы и падает в ночное время. Примерно в эти же часы повышается чувствительность органов чувств: человек утром лучше слышит, лучше различает оттенки цветов.
Введение………………………………………………………………………..2
Определение биоритмов……………………………………………………....3
Классификация биоритмов……………………………………………………4
Основные суточные ритмы человека………………………………………...7
Сезонные ритмы……………………………………………………………….10
Параметры биоритмов…………………………………………………………12
Циркадные ритмы……………………………………………………………...14
Заключение……………………………………………………………………..16
Список литературы…………………
Сезонные колебания физиологических показателей у многих теплокровных в определенной мере повторяют суточные: в зимний период отмечается понижение обмена и двигательной активности, в весенне-летний — активизация физиологических процессов.[4]
Циркадные ритмы отражают периодичность геофизических факторов, обусловленную вращением Земли вокруг своей оси. В течение суток закономерно изменяется, прежде всего естественное освещение. Суточным колебаниям подвержены цикл день-ночь, температура и влажность воздуха, напряженность электрического и магнитного поля Земли, потоки разнообразных космических факторов, падающих на Землю в конкретный временной цикл. Под влиянием этих внешних факторов совершалась эволюция всех форм жизни на Земле, колебания их в настоящее время, как и миллионы лет назад, играют жизненно важную роль для всех без исключения обитателей Земли. К примеру для дневных животных восход Солнца — сигнал для активной деятельности: добывания пищи, строительства жилья, выращивания потомства, а с наступлением темноты активизируются животные, ведущие ночной образ жизни. И все животные "подстраиваются" к этому суточному ритму. А кто не сможет "вписаться" в этот режим, заданный природой, погибают. Для выживания любой организм должен соизмерить свой ритм с внешними ритмами. Адаптация конкретного организма или видовая адаптация к внешним условиям в широком биологическом смысле — это синхронизация жизненных процессов (ритмов) организма или целой популяции с внешними ритмами, таким образом, циркадная периодичность жизненных функций является врожденным свойством.
Спонтанные циркадные ритмы обнаружены едва ли не у каждого вида живых существ. Возможное исключение составляют обитатели океанских глубин и подземных пещер, а также прокариоты (бактерии и сине-зеленые водоросли, клетки которых не имеют оформленного ядра и митохондрий).
Циркадные колебания обычно наблюдаются у более организованных одноклеточных организмов и в изолированных тканях многоклеточных организмов. Тем не менее и у позвоночных, и у беспозвоночных животных часть нервной системы обычно играет роль циркадного ритмоводителя для всего организма.
Для организма человека характерно повышение в дневные и снижение в ночные часы физиологических функций, обеспечивающих его физическую активность (частоты сердечных сокращений, минутного обьема крови, артериального давления, температуры тела, потребления кислорода, содержания сахара в крови, физической и умственной работоспособности и др.). В обычных условиях наблюдаются определенные соотношения между фазами отдельных околосуточных ритмов. Поддержание постоянства этих соотношений обеспечивает согласование функций организма во времени, обозначаемое как внутреннее согласование. Помимо этого, под действием меняющихся с суточной периодичностью факторов среды (синхронизаторов, или датчиков времени) происходит внешнее согласование циркадных ритмов. Различают первичные (имеющие основное значение) и вторичные (менее значимые) синхронизаторы. У животных и растений первичным синхронизатором служит, как правило, солнечный свет, у человека им становится также социальные факторы.
Циркадный механизм не универсален. Он различается в зависимости от биологического вида или даже от типа клеток у одного организма. Полагают, что циркадный механизм замыкается именно на уровне клетки. Клеточные механизмы можно изучать методами биохимии и генной инженерии. Существует множество биохимических способов воздействия на работу циркадных часов. Сначала использовались преимущественно световые импульсы. Так, для дрозофилы постоянного освещения — даже на уровне света неполной Луны — достаточно, чтобы остановить ход часов. При этом свет действует опосредованно, а не прямо на молекулы колебательного механизма. У большинства циркадных ритмов период почти совсем не зависит от уровня температуры, если только она остается в физиологически допустимых пределах. Более того, циркадные часы в отличие от подлинных независимых (по температуре) систем не защищены от перепадов температуры: малейшее изменение последней способно сдвинуть их фазу. Помимо света и перепадов температуры на период влияют многие химические вещества, изменяющие проницаемость мембран и нарушающие синтез белка. Их кратковременное введение приводит к сдвигу фазы. Однако затрагиваемые при этом процессы многочисленны и многообразны, и не ясно, чем может быть опосредовано их влияние на ход часов. Вероятно, ни сам АТФ, ни процесс его синтеза и распада не являются деталями механизма часов. [5]
6 Медицинская экология (для студентов медицинских вузов) - М.: "ООО „Издательство СпецЛит“", 2011. - 320 с.
Информация о работе Терминология в биоритмологии. Классификация биологических ритмов