Автор работы: Пользователь скрыл имя, 18 Июня 2013 в 01:38, контрольная работа
Применение данных государственного земельного кадастра является обязательным при разрешении межевых споров, определении платежей за землю, планировании использования и охраны земель, их изъятии и предоставлении для государственных, муниципальных и иных нужд. Они необходимы и при проведении землеустроительных работ, оценке хозяйственной деятельности, осуществлении государственного контроля и других мероприятий, связанных с использованием и охраной земель.
В связи с развитием рынка земли она выступает не только как объект хозяйственной деятельности, но и как объект недвижимого имущества с вовлечением ее в гражданский оборот и применением в отношении ее всех необходимых рыночных атрибутов, таких, как земельный налог, арендная плата, цена земли, сделки с землей. А потому сведения земельного кадастра являются основой для оценки земли как объекта недвижимого имущества и нормального функционирования в гражданском обороте.
Введение
1.Краткая история развития ГИС
1.2
2. Использование ГИС в землеустройстве
3.Методика выполнения работ по составлению схемы землеустройства в среде Arc View GIS 3.2a
Вывод
Литература
Компьютерная карта – карта, полученная на устройстве графического вывода с помощью средств автоматизированного картографирования (графопостроителей, принтеров, дигитайзеров и др. на бумаге, пластике, фотопленке и иных материалах) или с помощью геоинформационной системы.
Иногда к компьютерной карте относят также карты, изготовленные на неспециализированных приборах, например, на алфавитно-цифровых печатных устройствах, так называемые ЭВМ-карты или АЦПУ-карты.
ГИС-технологии – технологическая основа создания географических информационных систем, позволяющая реализовать их функциональные возможности.
Геоинформационный анализ – анализ размещения, структуры, взаимосвязей объектов и явлений с использованием методов пространственного анализа и геомоделирования.
Функциональные возможности ГИС – набор функций географических информационных систем и соответствующих программных средств:
• ввод данных в машинную среду путем импорта из существующих наборов цифровых данных или с помощью оцифровки источников;
• преобразование данных, включая конвертирование данных из одного формата в другой,
трансформацию картографических проекций, изменение систем координат;
• хранение, манипулирование и управление данными во внутренних и внешних базах данных;
• картометрические операции;
• средства персональных настроек пользователей.
Геоинформатика – наука, технология и производственная деятельность:
• по научному обоснованию, проектированию, созданию, эксплуатации и использованию географических информационных систем;
• по разработке геоинформационных технологий;
• по прикладным аспектам или
приложениям ГИС для
Геоматика — это совокупность применений информационных технологий, мультимедиа и средств телекоммуникации для обработки данных, анализа геосистем, автоматизированного картографирования; также этот термин употребляется как синоним геоинформатики или геоинформационного картографирования.
Цифровое покрытие (слой, тема) – семейство однотипных (одной мерности) пространственных объектов, относящихся к одному классу объектов в пределах некоторой территории и в системе координат, общих для набора слоев.
По типу объектов различают точечные, линейные и полигональные цифровые покрытия.
Пространственный объект (графический примитив) – цифровое представление объекта реальности (цифровая модель местности), содержащее его местоуказание и набор свойств, характеристик, атрибутов или сам этот объект. Выделяют четыре основных типа пространственных объектов:
1.3 Классификация ГИС
При всем многообразии типов ГИС возможна их классификация по нескольким основаниям.
По пространственному охвату различают глобальные, или планетарные, ГИС, субконтинентальные, национальные (зачастую имеющие статус государственных), межнациональные, региональные, субрегиональные и локальные (местные), в том числе муниципальные, и ультралокальные ГИС.
ГИС способна моделировать объекты и процессы, локализованные или протекающие не только на суше (территории), но и на акваториях морей, океанов и вутренних водоемов. Средства ГИС давно и успешно используются в морской навигации. Гораздо менее известны системы, распространяющие область своего влияния на воздушное пространство (аэроторию); это авианавигационные системы, системы планирования и выполнения аэросъемок и решения других задач, связанных с воздухоплаванием и др.
Наконец, для обеспечения деятельности в космическом пространстве ГИС способна решать задачи баллистики и управления полетами и другими передвижениями и действиями космических аппаратов, изучения внеземных объектов.
Состав (объектовый состав) и структура данных ГИС определяются объектами информационного моделирования, какими являются как собственно феномены реальности (лес, земля, вода, население, хозяйство), так и процессы (наводнения, загрязнение окружающей среды, миграционные процессы), а также нематериальные объекты, или идеи.
ГИС различаются предметной областью информационного моделирования; среди предметно-ориентированных, как правило, ведомственных ГИС бывают природоохранные ГИС, земельные информационные системы (ЗИС), городские, или муниципальные, ГИС (МГИС), ГИС для целей предотвращения и локализации последствий чрезвычайных ситуаций (ГИС для целей ЧС) и др.
Проблемная ориентация ГИС определяется решаемыми в ней научными и прикладными задачами. Они могут быть выстроены в ряд по мере усложнения и наращивания возможностей управления моделируемыми объектами и процессами: инвентаризация (кадастр, паспортизация) объектов и ресурсов, анализ, оценка, мониторинг, управление и планирование, поддержка принятия решений.
Классификация ГИС по их функциональности связана с программным обеспечением ГИС и направлению её использования.
Известна также классификация ГИС по уровню управления. Например, в зависимости от уровня органов государственного управления, использующих ресурсы геоинформационной системы, различают ГИС федерального, регионального и специального назначения, причем под последними понимаются системы, используемые для обслуживания информационных потребностей конкретных отраслей народного хозяйства.
ГИС как системы проектируются, создаются и эксплуатируются в комплексе составляющих их компонентов (блоков, подсистем, функциональных модулей), обеспечивающих функциональную полноту, адекватную решаемым задачам, возможность расширения функций и модификации системы.
Реализация ГИС — многоэтапный
процесс, включающий исследование предметной
области и требований пользователя
к системе, ее технико-экономическое
обоснование (анализ соотношения «затраты-прибыль»)
При рассмотрении объектов информационного (геоинформационного) моделирования в ГИС предполагалась достаточность их описания в терминах пространственных координат. Решение многих задач предусматривает необходимость координирования пространственных объектов во времени. Задание четвертой координаты объекта — времени — позволяет ввести понятие пространственно-временных данных. Ими оперируют пространственно-временные ГИС.
Резюмируя вышеизложенное,
под географической информационной
системой будем понимать аппаратно-программный
человеко-машинный комплекс, обеспечивающий
сбор, обработку, отображение и распространение
пространственно-
Классификация ГИС
При всем многообразии типов ГИС возможна их классификация по нескольким основаниям.
По пространственному охвату различают глобальные, или планетарные, ГИС, субконтинентальные, национальные (зачастую имеющие статус государственных), межнациональные, региональные, субрегиональные и локальные (местные), в том числе муниципальные, и ультралокальные ГИС.
ГИС способна моделировать объекты и процессы, локализованные или протекающие не только на суше (территории), но и на акваториях морей, океанов и вутренних водоемов. Средства ГИС давно и успешно используются в морской навигации. Гораздо менее известны системы, распространяющие область своего влияния на воздушное пространство (аэроторию); это авианавигационные системы, системы планирования и выполнения аэросъемок и решения других задач, связанных с воздухоплаванием и др.
Наконец, для обеспечения деятельности в космическом пространстве ГИС способна решать задачи баллистики и управления полетами и другими передвижениями и действиями космических аппаратов, изучения внеземных объектов.
Состав (объектовый состав)
и структура данных ГИС определяются
объектами информационного
ГИС различаются предметной
областью информационного моделирования;
среди предметно-
Проблемная ориентация ГИС определяется решаемыми в ней научными и прикладными задачами. Они могут быть выстроены в ряд по мере усложнения и наращивания возможностей управления моделируемыми объектами и процессами: инвентаризация (кадастр, паспортизация) объектов и ресурсов, анализ, оценка, мониторинг, управление и планирование, поддержка принятия решений.
Классификация ГИС по их функциональности связана с программным обеспечением ГИС и направлению её использования.
Известна также классификация ГИС по уровню управления. Например, в зависимости от уровня органов государственного управления, использующих ресурсы геоинформационной системы, различают ГИС федерального, регионального и специального назначения, причем под последними понимаются системы, используемые для обслуживания информационных потребностей конкретных отраслей народного хозяйства.
ГИС как системы проектируются, создаются и эксплуатируются в комплексе составляющих их компонентов (блоков, подсистем, функциональных модулей), обеспечивающих функциональную полноту, адекватную решаемым задачам, возможность расширения функций и модификации системы.
Реализация ГИС — многоэтапный
процесс, включающий исследование предметной
области и требований пользователя
к системе, ее технико-экономическое
обоснование (анализ соотношения «затраты-прибыль»)
При рассмотрении объектов информационного (геоинформационного) моделирования в ГИС предполагалась достаточность их описания в терминах пространственных координат. Решение многих задач предусматривает необходимость координирования пространственных объектов во времени. Задание четвертой координаты объекта — времени — позволяет ввести понятие пространственно-временных данных. Ими оперируют пространственно-временные ГИС.
Резюмируя вышеизложенное,
под географической информационной
системой будем понимать аппаратно-программный
человеко-машинный комплекс, обеспечивающий
сбор, обработку, отображение и распространение
пространственно-
2 глава
3. Использование
ГИС в кадастре
В настоящий момент остро стоит проблема создания и ведения земельного и других видов кадастров, которые являются основой экономической оценки государственных ресурсов и учёта их использования. Известно, что в выполнении таких работ лучшим средством является применение ГИС-технологий, причём не на одном каком-либо этапе, а на протяжении всей технологической цепочки от сбора первичных материалов и до создания конечной системы.
Главной и основополагающей задачей является получение качественного картографического материала. На поверхности Земли не может быть территории, которая никому не принадлежит. Использование традиционных технологий (бумажных) не даёт возможности представить в целом покрытие всей территории, поэтому невозможно утверждать, что все земли полностью и всецело учтены. Традиционно геодезическая съёмка и планы землепользования создавались локально на определённую территорию, например, сельского совета, и никогда ранее не подвергались компьютерной обработке, поэтому при внесении этой информации в компьютер возникают проблемы точности, несоответствия и увязки между территориальными единицами. Очень часто при внесении в компьютер координат поворотных точек внешних границ промеры между ними, записанные в технических отчётах, не совпадают с теми, что вычисляет компьютер, т.е. здесь мы имеем дело с влиянием так называемого «человеческого фактора».
Неточное определение промеров линий влечёт за собой ошибки в вычислении площадей. Даже при правильной и точно проведённой съёмке ошибки возникали в процессе создания графических материалов (нанесение на лавсан). Так как все контура внутри хозяйства взаимосвязаны друг с другом, то неправильное нанесение хотя бы одной линии влечёт за собой искажения смежных областей карты. При создании цифровой карты по таким материалам возникают большие искажения со сдвигами порядка 10-20 м относительно истинного расположения контуров на местности. Учитывая, в большинстве случаев, плохое качество самих материалов, при переводе имеющихся картографических материалов в цифровой вид ошибка в плане составляет до 30 м, происходит сдвиг контуров и их вращение на произвольный угол. Почвенные карты, которые есть сегодня, имеют качество и точность ещё хуже.Поэтому использовать имеющиеся картографические землеустроительные материалы можно с большой натяжкой и только в виде землеустроительных схем. Для получения реальной картины приходится делать практически полную геодезическую съёмку, что занимает много времени и средств.