Опасные явления, возникающие при строительстве и эксплуатации морских трубопроводов в условиях арктического шельфа

Автор работы: Пользователь скрыл имя, 20 Мая 2013 в 18:23, курсовая работа

Описание работы

Целью курсовой работы было показать опасные явления, возникающие при строительстве и эксплуатации морских трубопроводов в условиях арктического шельфа на примере Штокмановского газоконденсатного месторождения.
В работе приведены основные теоретические выкладки, касающиеся способов прокладки, заглубления в грунт морских трубопроводов. Также указаны условия окружающей среды, в которой происходит укладка морского трубопровода. Рассмотрены опасные явления, происходящие в процессе строительства и эксплуатации морского трубопровода.
Также в данной работе проведены расчёты прочности трубопровода при укладке, ледовые нагрузки во время эксплуатации морского трубопровода.

Содержание работы

ВВЕДЕНИЕ 3
ИСХОДНЫЕ ДАННЫЕ 4
1 ТЕОРЕТИЧЕСКАЯ ЧАСТЬ 5
1.1 Условия окружающей среды Арктического шельфа 5
1.2 Классификация способов прокладки морских трубопроводов 7
1.3 Протаскивание трубопроводов по дну 20
1.4 Строительство трубопроводов в ледовых условиях 23
1.5 Рытье траншей для подводных трубопроводов 32
2 РАСЧЕТНАЯ ЧАСТЬ 44
2.1 Расчет стенки трубопровода при избыточном внутреннем давлении 44
2.1.1 Отечественные нормы расчета. 44
2.1.2 Американский стандарт ASME B31.8 45
2.1.3 Британский стандарт BS 8010, часть 3. 46
2.1.4 Норвежский стандарт OS-F101 47
2.2 Расчет устойчивости морских подводных трубопроводов при воздействии волн и течений [5]. 49
2.2.1 Глубоководный участок 49
2.2.2 Мелководный участок 51
2.2.3 Прибрежный участок 58
2.3 Расчет трубопроводов на лавинное смятие 59
БИБЛИОГРАФИЧЕСКИЙ СПИСОК 60

Файлы: 1 файл

Kursovaya_rabota_-_2.docx

— 1.66 Мб (Скачать файл)

Главное препятствие при строительстве трубопроводов в таких районах — суровые климатические условия и ледовые условия, отдаленность от промышленных районов и связанная с ней трудность доставки грузов. Особенно сложно организовать прокладку трубопровода в ледовых условиях. Часто это связано с кратковременностью межледового периода, во время которого можно было бы уложить трубопровод традиционными методами, с наличием подвижных льдов в течение всего сезона ледостава, препятствующих укладке трубопровода со льда, с торосистостью льда, создающей препятствия при укладке трубопровода с припайного льда, и т.п.


На  основе отечественного опыта строительства  подводных трубопроводов через реки в зимних условиях во ВНИИСТе были разработаны методы прокладки морских трубопроводов в условиях прочного припайного льда. Один из таких методов — укладка трубопроводов с применением ледового стингера. Заранее изготовленный трубопровод вмораживают в лед ,показано на рисунке 1.8, например путем полива водой. Затем со стороны погружаемого конца трубопровода одновременно с двух сторон баровой машины лед прорезается насквозь. Под собственной тяжестью трубопровод вместе с ледовым покровом под ним (ледовый стингер) опускается на грунт. Ледовый стингер под трубой обладает определенной, заранее рассчитанной плавучестью и создает разгружающий эффект благодаря тому, что лед легче воды. Регулируя ширину ледового стингера, можно изменять вес трубопровода в воде, доводя его до минимального, что позволяет увеличить глубину укладки трубопровода.

Рисунок 1.8 — Укладка трубопровода с помощью «ледовой подстилки»:

1 — трубопровод; 2 — прорезь во льду; 3 — лед


Другой  метод укладки, показанный на рисунке  1.9, предусматривает поэлементную сборку трубопровода из отдельных труб на платформе-трубоукладчике, предназначенном для работы в ледовых условия. Трубоукладчик состоит из сборочной платформы (из двух понтонов), на которой размещается трубопровод, лежащей на опорных роликах, грузовой лебедки, связанной тросом с анкерной сваей, и закрытого от непогоды помещения вокруг трубопровода. За кормой платформы распложены ледорезная машина и поддерживающее устройство, связанные с платформой тросовыми тягами. Поддерживающее устройство состоит из двух понтонов с полозом, соединенных между собой порталом. К центру портала подвешен полиспаст с верхним неподвижным и нижним подвижным шкивами. Шкив поддерживает подвеску с роликовыми опорами, соединенными между собой шарниром. Ледорезная машина включает в себя корпус, движущийся по льду на полозьях, и два цепных бара для разрезания льда. На корпусе машины установлен механический привод для вращения цепи баров, их подъема или опускания во время работы.

Трубоукладчик работает следующим образом. На платформе  проводится сборка отдельных труб в нитку. Трубы, передвигаясь по роликам, последовательно (по одной) стыкуются к трубопроводу, центрируются, свариваются и контролируются. При использовании обетонированных труб проводится изоляция и обетонирование их стыков непосредственно на платформе. Для выполнения данных операций на платформе установлено все необходимое оборудование, включая трубный центратор, сварочные машины, рентгеновское оборудование, бетономешалку и др. По мере наращивания трубопровода платформа передвигается по льду вперед с помощью тяговых лебедок, подтягивающих платформу тросом к анкеру. Лед прорезает двухбаровая ледорезная машина. По мере продвижения платформы вперед трубопровод обламывает под собой прорезанную полосу льда и проталкивает обломки в сторону, под лед.

 

 


Рисунок 1.9 — Ледовая платформа-трубоукладчик:

1 — разгружающее устройство; 2 —  тяговые тросы; 3 — роликовая опора; 4 — кладовая материалов; 5 — рентгеновское  оборудование; 6 — сварочное оборудование; 7 — тельфер; 8 — рубка управления; 9 — автокран (грузоподъемность 25 т); 10 — тяговая лебедка для передвижения трубоукладчика; 11 — электростанция мощностью 400 кВт; 12 — площадка для приготовления бетона; 13 — корпус трубоукладчика; 14 — лебедка; 15 — двухбаровая ледорезная машина; 16 — лед; 17 — подвеска трубы; 18 — трубопровод

 

 


Для придания трубопроводу заданной кривизны за платформой тросами буксируется устройство, с помощью которого трубопровод поддерживается на заданной от поверхности льда высоте. Трубопровод при движении скатывается по роликовым опорам подвески, регулирование положения которой по высоте производится полиспастом.

Трассу  перед трубоукладчиком очищают  от торосов, а поверхность льда выравнивают. Производительность трубоукладчика рассчитана на изготовление 650 м трубопровода диаметром 1020 мм в 1 сут с применением автоматической сварки неповоротных стыков труб.

Рассмотренные методы укладки трубопровода со льда испытаны на моделях в ледовой  лаборатории научно-исследовательского института Арктики и Антарктики в г. Ленинграде. Для этого была изготовлена модель ледового трубоукладчика в масштабе 1:50. В качестве трубопровода использовались полиэтиленовая труба диметром 25,4 мм, армированная для придания необходимой жесткости медным стержнем диаметром 1 мм в свинцовой оболочке. Длина модели 4 м, масса 1 см трубопровода — 8,2 г, что соответствует относительной плотности трубопровода 1,6.

Опыт  проводился в лотке (4×2×1,5 м) при температуре окружающего воздуха 6—8°С, льда — (2÷4,5)°С, воды подо льдом 0,6°С. Соленость воды составляла 9,5‰, льда — 2,5‰. Во время эксперимента в лотке намораживался лед толщиной 2,5—5,5 см при глубине воды 100—140 см. Прочностные характеристики льда: σизг=13Н/см2, σсж=62Н/см2.


В результате проведенных экспериментов  было выявлено следующее. При укладке  с применением ледового стингера наибольшее опасение вызывала возможность откалывания льда от трубопровода в результате изгиба трубы во время погружения на дно. Однако вмороженный трубопровод во время погружения до самого дна оставался сцепленным с ледовым стингером. При этом лед значительно уменьшал прогиб трубопровода по сравнению с трубой без льда. Через некоторое время ледовая подстилка под влиянием плюсовой температуры воды отсоединялась от трубы и сплывала на поверхность. Следовательно, рассеялось опасение, что трубопровод долгое время будет находиться на дне при малой отрицательной плавучести.

При укладке с ледового трубоукладчика необходимо было выяснить взаимодействие опускаемого трубопровода со льдом  в майне. Выяснилось, что лед почти  любой толщины без всяких поперечных надрезов беспрепятственно обламывается трубопроводом (участками до 15 м в натуре). Разломанные куски льда частично запасовываются под лед (в сторону майны), частично всплывают в майне после укладки трубопровода. Это явление благоприятствует укладке труб.

В Канаде разработан трубоукладчик, изображенный на рисунке 1.10, для укладки со льда предварительно изготовленной нитки трубопровода. Он состоит из рамы с полозом, который двигается по льду. На раме смонтирована ферма-направление, которая может поворачиваться на шарнире в вертикальной плоскости. В носовой части имеется неподвижный направляющий желоб, в кормовой части на тросах за проушины подвешен стингер. К раме прикреплена продольная балка с вмонтированным в неё колесом-фрезой для разрушения льда. В средней части рама трубоукладчика поддерживается гусеничной тележкой.

 

Рисунок 1.10 — Ледовый трубоукладчик для арктических районов Канады:

1 — салазки; 2 — рама; 3 — ферма-направление; 4 — шарнир; 5 — трубопровод; 6 — носовое направляющее устройство; 7 — лед; 8 — рама; 9 — гусеница с тележкой; 10 — колесо-фреза; 11 — продольная балка; 12 — стингер; 13 — проушина; 14— трос


Устройство  работает следующим образом. Смонтированный и испытанный на льду трубопровод последовательно пропускается через направляющий желоб, ферму-направление и стингер. При продвижении трубоукладчика вперед, например за счет натяжения троса, связанного с анкером во льду, трубопровод проходит по всем направляющим с заданным радиусом изгиба. Для изменения глубины укладки, необходима замена стингера и фермы-направления. Лед прорезается колесом-фрезой. Трубоукладчиком такой конструкции можно укладывать только готовый (полностью собранный и сваренный на льду) трубопровод. Однако сборка и сварка трубопровода непосредственно на льду в ряде случаев затруднена, например в арктических условиях.

Для островов арктических районов Канады разработан способ протаскивания по дну трубопроводов с использованием припайного льда в качестве опоры для тяговых механизмов, которые устанавливают прямо на льду. Схема протаскивания подводного трубопровода между островами арктических районов Канады изображена на рисунке 1.11. протаскивание трубопровода осуществляют в проливе между островами следующим образом. Оголовок трубопровода, смонтированного на берегу, соединяют стальным тросом с тяговыми салазками, установленными на лед пролива. Салазки буксируют тросами по льду с помощью двух тракторных лебедок, закрепленных к анкерным столбам, вмороженным в лед на расстоянии 1700 м от салазок. С помощью многочерпакового канавокопателя во льду впереди салазок прорезается майна, через которую проходит тяговый трос в воду к оголовку трубопровода. Впереди движущегося по дну трубопровода установлен специальный подводный струг, разрабатывающий траншею, в которую опускается протягиваемый трубопровод.


Рисунок 1.11 — Схема протаскивания подводного трубопровода между

островами арктических  районов Канады

1 — трубопровод; 2 — подводный струг; 3 — погруженный трос; 4 — траншея; 5 — тяговые салазки; 6 — тяговые тросы; 7 — тракторы с тяговыми лебедками; 8 — анкерные столбы; 9 — траншеекопатель; 10 — бульдозер, выравнивающий отвалы раздробленного льда

 

После протаскивания на определенную длину  захваты тяговых лебедок переставляют на новые анкерные столбы. В этот момент натяжение салазок обеспечивается тракторной лебедкой за счет массы  самого трактора. По мере увеличения глубины  моря погруженный трос наращивается.

Исследования, проведенный в Канаде, показали, что лед можно искусственно утолщать со скоростью 25 мм/ч путем полива его морской водой вдоль строительно-монтажной полосы с одновременным заполнением ледовой спайкой всех трещин. При этом лед может выдержать значительные вертикальные нагрузки от находящейся на нем техники. Особенно большие нагрузки он выдерживает в горизонтальном направлении, что обеспечивает протаскивание трубопроводов по дну моря.


Одним из трубопроводов, проложенных в  зимних условиях со льда в море, является нефтепровод сечением 426×11 мм через пролив Невельского с о. Сахалин на материк на глубинах до 23 м. Построенный трестом Союзподводгазстрой трубопровод имеет протяженность 9 км. Примечательно, что укладка части трубопровода в относительно мелководной зоне моря проводилась в зимний период со льда. Так как припайный лед в проливе обычно достигает толщины 0,6—1 м, при операциях по укладке использовались различные грузоподъемные машины. Схема укладки трубопровода со льда в проливе Невельского показана на рисунке 1.12.

 

Рисунок 1.12 — Укладка трубопровода со льда в проливе Невельского:

1 — лед; 2 — трос для отстропки разгружающих понтонов; 3 — майна во льду; 4 — разгружающий понтон; 5 — дно пролива; 6 — положение трубопровода после укладки очередной секции; 7 — трубопровод

 

Плети трубопровода длиной 350—700 м изготавливали на берегу, покрывали футеровкой и оснащали чугунными пригрузами. Затем их буксировали по льду, раскладывали вдоль трасы и сваривали между собой в нитку длиной 2500 м. Каждый участок трубопровода длиной по 300 м оснащали грузоподъемными понтонами (7 шт. по 1,5 т). Рядом с трубопроводом ледорезной машиной во льду прорезалась майна шириной 1,5 м и длиной 300 м, в которую с помощью лебедок затаскивался трубопровод, плавающий на поверхности майны. Затем путем залива воды в головной участок плети проводилось последовательное затопление трубопровода. После опускания трубопровода на грунт понтоны отсоединяли от трубопровода и поднимали со дна моря. Процесс укладки продолжался. Трубопровод опускался на дно в траншею, открытую земснарядом до ледостава.


В разработанной ВНИИСТом технологии строительства перехода через Байдарацкую  губу газопровода п-ов Ямал — Центр укладка большого участка трубопровода производится с припайного льда. Общая длина морской части трубопровода от о. Литке на восточном берегу губы до пос. Яры на западном берегу составляет 67 км (из них 18 км с устойчивым припайным льдом у берегов). Примерно раз в 5 лет губа целиком промерзает. Время существования ледового покрова с толщиной 0,6—1,2 м составляет примерно 5—6 мес. Через губу прокладывается пять ниток трубопровода из обетонированных труб сечением 1020×20 мм, укладываемых различными способами в двух разнохарактерных зонах. В береговой зоне и на прибрежном участке траншею для заглубления труб разрабатывают с ледового покрова роторным и одночерпаковыми экскаваторами на глубину до 2 м. Сваренный и испытанный на бровке траншеи трубопровод укладывают в траншею с помощью трубоукладчиков. В целом процесс не отличается от принятого для сухопутных трубопроводов. На участке, где глубина превышает 2—3 м, при укладке используют ледовый стингер или ледовый трубоукладчик. В район строительства трубы доставляют по льду вдоль трасы трубопровода с помощью саней-трубовозов с тягой по льду трактором, а расчистку трассы от торосов осуществляют бульдозером и горизонтально-фрезерными агрегатами. подводные траншеи для заглубления трубопроводов на этом участке отрывают заранее по чистой воде с помощью земснарядов. Засыпка проводится путем естественного замыва придонным грунтом.

 

    1. Рытье траншей для подводных трубопроводов

Информация о работе Опасные явления, возникающие при строительстве и эксплуатации морских трубопроводов в условиях арктического шельфа