Автор работы: Пользователь скрыл имя, 11 Февраля 2013 в 10:37, контрольная работа
С первых двух глобальных революций в развитии научных знаний, происходивших в XVI-XVII вв., создавших принципиально новое по сравнению с античностью и средневековьем понимание мира, и началась классическая наука, ознаменовавшая генезис науки как таковой, как целостного триединства, т.е. особой системы знания, своеобразного духовного феномена и социального института
Введение Стр. 3
1. Понятие социальной нормы. Стр. 5
2. Правовые и политические нормы. Стр. 6
3. Правовые и моральные нормы. Стр. 15
4. Право и религия. Стр. 20
5. Корпоративные нормы, их особенности и значение. Стр. 23
6. Соотношение норм прав и обычаев. Стр. 25
Заключение. Стр. 28
Список используемой литературы. Стр. 30
Содержание.
1. Классический период в истории науки (общая характеристика). ..….Стр.3
2. Происхождение и геологическая эволюция Земли. …………………..Стр.9
2.1 Происхождение Земли. ………………………………………………..Стр.9
2.2 Геологическая эволюция Земли. ……………………………………...Стр.12
3. Синергетика. ……………………………………………………………..Стр.
Список используемой литературы. ……………………………………….Стр.16
(общая характеристика).
С первых двух глобальных революций в развитии научных знаний, происходивших в XVI-XVII вв., создавших принципиально новое по сравнению с античностью и средневековьем понимание мира, и началась классическая наука, ознаменовавшая генезис науки как таковой, как целостного триединства, т.е. особой системы знания, своеобразного духовного феномена и социального института1.
Закрепление самостоятельного статуса науки в XVI-XVII в.в. было связано с деятельностью целой плеяды великих ученых. Именно к этому времени математика становится универсальным языком науки, базисом аналитических исследований (Р. Декарт), а центральное место начинают занимать методологии, основанные на опытном установлении отношений между фактами и дальнейшем их обобщении индуктивными методами (Ф. Бэкон). Исходным пунктом формирующейся классической науки стала гелиоцентрическая система мира (Н. Коперник). Тот переворот, который совершил в астрономии польский астроном Николай Коперник (1473-1543), имел огромное значение для развития науки и философии и их отделения друг от друга. В год своей смерти он публикует труд "Об обращении небесных тел", в котором в качестве постулата утверждает, что все небесные тела являются сферами, вращающимися по круговым орбитам вокруг Солнца, восседающего на царском престоле и управляющего всеми светилами2.
В этой гелиоцентрической концепции сформулировано новое миропонимание, согласно которому Земля - одна из планет, движущаяся по круговой орбите вокруг Солнца. Совершая обращение вокруг Солнца, она вращается и вокруг своей оси. Кажущиеся движения планет принадлежат не им, а Земле и через ее движение можно объяснить их неравномерности. Идея движения как естественного свойства небесных и земных тел - ценное достижение концепции Коперника. Кроме того, им высказана мысль о том, что движение тел подчинено некоторым общим закономерностям. Но он был убежден в конечности мироздания и считал, что Вселенная где-то заканчивается неподвижной твердой сферой, на которой закреплены неподвижные звезды.
Убеждение Коперника в ограниченности Вселенной твердой сферой было опровергнуто датским астрономом Тихо Браге (1546-1601), который сумел рассчитать орбиту кометы, проходившей вблизи планеты Венера. Согласно его расчетам, получалось, что эта комета должна была натолкнуться на твердую поверхность сферы, если бы та существовала, чего не произошло.
С Галилея начинается рассмотрение проблемы движения, лежащей в основе классической науки. До него господствовало представление о движении, сформированное еще Аристотелем, согласно которому оно происходит, если существует сила, приводящая тело в движение; нет силы, действующей на тело, нет и движения тела. Кроме того, чтобы последнее продолжалось, необходимо сопротивление, другими словами, в пустоте движение невозможно, так как в ней нет ничего, что оказывало бы сопротивление.
Галилей предположил, что, если
допустить существование
Идеи закона инерции и
примененный Галилеем метод заложили
основы классической физики. К его
научным достижениям относятся:
установление того, что скорость свободного
падения тела не зависит от его
массы, а пройденный путь пропорционален
квадрату времени падения; создание
теории параболического движения, теории
прочности и сопротивления
Принцип относительности
Галилея, преобразования Галилея, принцип
инерции и другие понятия непосредственно
вошли в механику Ньютона, с которой
и началось классическое естествознание.
Наконец, нельзя не отметить важность
создания огромного объема экспериментальной
информации, накопленной к XVII веку,
особенно в области астрономии, а
также предварительной
Начало первого - классического - периода в истории науки обычно связывают с именем И. Ньютона. Велик вклад Ньютона и в математику, и в оптику, однако, фундаментом классического естествознания стала созданная им механика, которая не только навела порядок в огромном эмпирическом материале, накопленном многими поколениями ученых, но и дала в руки людей мощный инструмент однозначного предсказания будущего в широкой области объектов и явлений природы. Причины перемещения тел в пространстве, закономерности этих перемещений, способы их адекватного описания всегда были в центре внимания человека, так как непосредственно касались наиболее близкой религиозному сознанию области естествознания, а именно - движения небесных тел. Поиск закономерностей этих движений был для человека не столько связан с удовлетворением научной любознательности, сколько преследовал глубокую религиозно-философскую цель: познать смысл бытия. Поэтому такое значение во все времена уделялось астрономическим наблюдениям, тщательной фиксации мельчайших подробностей в поведении небесных тел, интерпретации повторяющихся событий.
Одним из величайших достижений на этом поприще стали эмпирические законы И. Кеплера, которые убедительно показали существование порядка в движении планет Солнечной системы. Решающий же шаг в понимании причин этого порядка был сделан И. Ньютоном. Созданная им классическая механика в чрезвычайно лаконичной форме обобщила весь предшествующий опыт человечества в изучении движений. Оказалось, что все многообразие перемещений макроскопических тел в пространстве может быть описано всего лишь двумя законами: законом инерции (F = ma) и законом всемирного тяготения (F = Gm1m2 / r2). И не только законы Кеплера, относящиеся к Солнечной системе, оказались следствием законов Ньютона, но и все наблюдаемые человеком в естественных условиях перемещения тел стали доступными аналитическому расчету. Точность, с которой такие расчеты позволяли делать предсказания, удовлетворяли любые запросы. Сильнейшее впечатление на людей произвело обнаружение в 1846 году ранее неизвестной планеты Нептун, положение которой было рассчитано заранее на основании уравнений Ньютона (Адамс и Леверье).
В Новое время сложилась механическая картина мира, утверждающая: вся Вселенная - совокупность большого числа неизменных и неделимых частиц, перемещающихся в абсолютном пространстве и времени, связанных силами тяготения, подчиненных законам классической механики; природа выступает в роли простой машины, части которой жестко детерминированы; все процессы в ней сведены к механическим.
Механическая картина мира сыграла во многом положительную роль, дав естественнонаучное понимание многих явлений природы. Таких представлений придерживались практически все выдающиеся мыслители XVII в. - Галилей, Ньютон, Лейбниц, Декарт. Для их творчества характерно построение целостной картины мироздания. Учеными не просто ставились отдельные опыты, они создавали натурфилософские системы, в которых соотносили полученные опытным путем знания с существующей картиной мира, внося в последнюю необходимые изменения. Без обращения к фундаментальным научным основаниям считалось невозможным дать полное объяснение частным физическим явлениям. Именно с этих позиций начинало формироваться теоретическое естествознание, и в первую очередь - физика.
В основе механистической картины мира лежит метафизический подход к изучаемым явлениям природы как не связанным между собой, неизменным и не развивающимся.
К середине XIX века авторитет
классической механики возрос настолько,
что она стала считаться
Очень образно об этом сказал
сам Лаплас: "Ум, которому были бы
известны для какого-либо момента
времени все силы, одушевляющие природу,
обнял бы в одной формуле движение
величайших тел Вселенной наравне
с движением атомов. И будущее,
также как и прошедшее
Однако, эта программа - сведение
всех природных явлений к
После этого, в конце XIX в., большинство ученых считало, что создание полной и окончательной естественнонаучной картины мира практически завершено. Все явления природы, в соответствии с этой картиной мира, являются следствием электромагнитных и гравитационных взаимодействий между зарядами и массами, которые приводят к однозначному, полностью определенному начальными условиями поведению тел (концепция детерминизма). Критериями истинности в такой картине мира являются, с одной стороны, эксперимент ("практика - критерий истины"), а с другой стороны - однозначный логический вывод (с XVII века, как правило, математический) из более общих посылок (дедукция). Отметим здесь также, что одним из главных методологических принципов классического естествознания являлась независимость объективных процессов в природе от субъекта познания, отделенность объекта от средств познания.
Дальнейшее развитие науки вносит существенные отклонения от классических ее канонов.
2. Происхождение
и геологическая эволюция
2.1 Происхождение Земли.
Мы живем во Вселенной,
а наша планета Земля является
ее мельчайшим звеном. Поэтому, история
возникновения Земли тесно
Значение термина Вселенная в естествознании более узкое и приобрело специфически научное звучание. Вселенная – место вселения человека, доступное эмпирическому наблюдению и проверяемое современными научными методами. Сейчас происхождение Вселенной построено на двух моделях:
а) Модель расширяющейся Вселенной. Наиболее общепринятой в космологии является модель однородной изотропной нестационарной горячей расширяющейся Вселенной, построенная на основе общей теории относительности и релятивистской теории тяготения, созданной Альбертом Эйнштейном в 1916 году.
б) Модель Большого Взрыва. Наблюдаемая нами Вселенная, по данным современной науки, возникла в результате Большого взрыва около 15-20 млрд. лет назад. Представление о Большом Взрыве является составной частью модели расширяющейся Вселенной1.
Все вещество Вселенной в начальном состоянии находилось в сингулярной точке: бесконечная плотность массы, бесконечная кривизна пространства и взрывное, замедляющееся со временем расширение при высокой температуре, при которой могла существовать только смесь элементарных частиц. Затем последовал взрыв. «Вначале был взрыв. Не такой взрыв, который знаком нам на Земле и который начинается из определенного центра и затем распространяется, захватывая все больше и больше пространства, а взрыв, который произошел одновременно везде, заполнив с самого начала все пространство, причем каждая частица материи устремилась прочь от любой другой частицы», - писал в своей работе С. Вейнберг.
Что же было после Большого взрыва? Образовался сгусток плазмы – состояния, в котором находятся элементарные частицы – нечто среднее между твердым и жидким состоянием, который и начал расширяться все больше и больше под действием взрывной волны. Через 0,01 сек после начала Большого Взрыва во Вселенной появилась смесь легких ядер. Так появились не только материя и многие химические элементы, но и пространство и время.
Данные модели помогают выдвинуть гипотезы о происхождении Земли:
1. Французский ученый
Жорж Бюффон (1707—1788) предположил,
что земной шар возник в
результате катастрофы. В очень
отдаленное время какое-то