Однофакторный дисперсионный анализ: область применения, технология решения задачи

Автор работы: Пользователь скрыл имя, 16 Ноября 2013 в 18:57, реферат

Описание работы

Дисперсионный анализ (от латинского Dispersio – рассеивание) – статистический метод, позволяющий анализировать влияние различных факторов на исследуемую переменную. Метод был разработан биологом Р. Фишером в 1925 году и применялся первоначально для оценки экспериментов в растениеводстве. В дальнейшем выяснилась общенаучная значимость дисперсионного анализа для экспериментов в психологии, педагогике, медицине и др.
Целью дисперсионного анализа является проверка значимости различия между средними с помощью сравнения дисперсий. Дисперсию измеряемого признака разлагают на независимые слагаемые, каждое из которых характеризует влияние того или иного фактора или их взаимодействия.

Содержание работы

Введение
1. Дисперсионный анализ
1.1 Основные понятия дисперсионного анализа
1.2 Однофакторный дисперсионный анализ
2. Применение дисперсионного анализа в различных задачах и исследованиях
3.Дисперсионный анализ в контексте статистических методов
3.1Векторные авторегрессии
3.2Факторный анализ
3.3Парная регрессия. Вероятностная природа регрессионных моделей
Заключение
Список использованных источников

Файлы: 1 файл

реферат.doc

— 95.50 Кб (Скачать файл)

РОССИЙСКИЙ  ГОСУДАРСТВЕННЫЙ СОЦИАЛЬНЫЙ УНИВЕРСИТЕТ

Кафедра прикладной математики и информатики

 

 

 

Реферат на тему «Однофакторный дисперсионный анализ: область применения, технология решения  задачи».

 

 

 

 

 

 

Выполнила Оюн  Виктория Буяновна

Студентка 2 курса 

БИЗ-Д-2-1

Проверила Мудракова  О.А.

 

 

 

 

 

 

 

 

МОСКВА 2013

 

 

 

Введение

1. Дисперсионный  анализ 
   1.1 Основные понятия дисперсионного анализа

   1.2 Однофакторный  дисперсионный анализ

2. Применение  дисперсионного анализа в различных  задачах и исследованиях

3.Дисперсионный анализ в контексте статистических методов 
  3.1Векторные авторегрессии 
  3.2Факторный анализ 
  3.3Парная регрессия. Вероятностная природа регрессионных моделей 
Заключение 
Список использованных источников

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Дисперсионный анализ (от латинского Dispersio – рассеивание) – статистический метод, позволяющий анализировать влияние различных факторов на исследуемую переменную. Метод был разработан биологом Р. Фишером в 1925 году и применялся первоначально для оценки экспериментов в растениеводстве. В дальнейшем выяснилась общенаучная значимость дисперсионного анализа для экспериментов в психологии, педагогике, медицине и др.

Целью дисперсионного анализа   является проверка значимости различия между средними с помощью сравнения дисперсий. Дисперсию измеряемого признака разлагают на независимые слагаемые, каждое из которых характеризует влияние того или иного фактора или их взаимодействия. Последующее сравнение таких слагаемых позволяет оценить значимость каждого изучаемого фактора, а также их комбинации /1/.

При истинности нулевой гипотезы (о равенстве средних в нескольких группах наблюдений, выбранных из генеральной совокупности), оценка дисперсии, связанной с внутригрупповой  изменчивостью, должна быть близкой  к оценке межгрупповой дисперсии.

При проведении исследования рынка часто встает вопрос о сопоставимости результатов. Например, проводя опросы по поводу потребления какого-либо товара в различных регионах страны, необходимо сделать выводы,  на сколько данные опроса отличаются или не отличаются друг от друга. Сопоставлять отдельные показатели не имеет смысла и поэтому процедура сравнения и  последующей оценки производится по некоторым усредненным значениям и отклонениям от этой усредненной оценки. Изучается вариация признака. За меру вариации может быть принята дисперсия. Дисперсия σ2 – мера вариации, определяемая как средняя из отклонений признака, возведенных в квадрат.

На практике часто возникают  задачи более общего характера –  задачи проверки существенности различий средних выборочных нескольких совокупностей. Например, требуется оценить влияние различного сырья на качество производимой продукции, решить задачу о влиянии количества удобрений на урожайность с/х продукции.

Иногда дисперсионный  анализ применяется, чтобы установить однородность нескольких совокупностей (дисперсии этих совокупностей одинаковы по предположению; если дисперсионный анализ покажет, что и математические ожидания одинаковы, то в этом смысле совокупности однородны). Однородные же совокупности можно объединить в одну и тем самым получить о ней более полную информацию, следовательно, и более надежные выводы /2/.

1 Дисперсионный анализ

1.1 Основные понятия дисперсионного  анализа

В процессе наблюдения за исследуемым объектом качественные факторы произвольно или заданным образом изменяются. Конкретная реализация фактора (например, определенный температурный режим, выбранное оборудование или материал) называется уровнем фактора или способом обработки. Модель дисперсионного анализа с фиксированными  уровнями факторов называют моделью I, модель со случайными факторами - моделью II. Благодаря варьированию  фактора  можно  исследовать  его  влияние  на величину отклика. В настоящее время общая теория дисперсионного анализа разработана для моделей I.

В зависимости от количества факторов, определяющих вариацию результативного признака, дисперсионный анализ подразделяют на однофакторный и многофакторный.

Основными схемами организации  исходных данных с двумя и более  факторами являются:

- перекрестная классификация,  характерная для моделей I, в которых каждый уровень одного фактора сочетается при планировании эксперимента с каждой градацией другого фактора;

- иерархическая (гнездовая)  классификация, характерная для  модели II, в которой каждому случайному, наудачу выбранному значению  одного фактора соответствует свое подмножество значений второго фактора.

Если одновременно исследуется  зависимость отклика от качественных и количественных факторов, т.е. факторов смешанной природы, то используется ковариационный анализ /3/.

При обработке данных эксперимента наиболее разработанными и поэтому распространенными считаются две модели. Их различие обусловлено спецификой планирования самого эксперимента. В модели дисперсионного анализа с фиксированными эффектами исследователь намеренно устанавливает строго определенные уровни изучаемого фактора. Термин «фиксированный эффект» в данном контексте имеет тот смысл, что самим исследователем фиксируется количество уровней фактора и различия между ними. При повторении эксперимента он или другой исследователь выберет те же самые уровни фактора. В модели со случайными эффектами уровни значения фактора выбираются исследователем случайно из широкого диапазона значений фактора, и при повторных экспериментах, естественно, этот диапазон будет другим.

Таким образом, данные модели отличаются между собой способом выбора уровней фактора, что, очевидно, в первую очередь влияет на возможность обобщения полученных экспериментальных результатов. Для дисперсионного анализа однофакторных экспериментов различие этих двух моделей не столь существенно, однако в многофакторном дисперсионном анализе оно может оказаться весьма важным.

При проведении дисперсионного анализа должны выполняться следующие  статистические допущения: независимо от уровня фактора величины отклика  имеют нормальный (Гауссовский) закон распределения и одинаковую дисперсию. Такое равенство дисперсий называется гомогенностью. Таким образом, изменение способа обработки сказывается лишь на положении случайной величины отклика, которое характеризуется средним значением или медианой. Поэтому все наблюдения отклика принадлежат сдвиговому семейству нормальных распределений.

Говорят, что техника дисперсионного анализа является "робастной". Этот термин, используемый статистиками, означает, что данные допущения могут  быть в некоторой степени нарушены, но несмотря на это, технику можно использовать.

При неизвестном законе распределения  величин отклика используют непараметрические (чаще всего ранговые) методы анализа.

В основе дисперсионного анализа лежит разделение дисперсии  на части или компоненты. Вариацию, обусловленную влиянием фактора, положенного в основу группировки, характеризует межгрупповая дисперсия σ2. Она является мерой вариации частных средних по группам  вокруг общей средней   и определяется по формуле:

где   k -  число групп;  

nj  - число единиц в j-ой группе; 

- частная средняя по j-ой  группе;  

- общая средняя по совокупности  единиц.

Вариацию, обусловленную  влиянием прочих факторов, характеризует  в каждой группе внутригрупповая дисперсия σj2.

Между общей дисперсией σ02, внутригрупповой дисперсией σ2 и  межгрупповой дисперсией  существует соотношение:

σ02 =  + σ2.

Внутригрупповая дисперсия объясняет влияние  неучтенных при группировке факторов, а межгрупповая дисперсия объясняет  влияние факторов группировки на среднее значение по группе /2/.

1.2  Однофакторный дисперсионный анализ

Однофакторная дисперсионная модель имеет вид:

xij = μ + Fj + εij,                                                             (1)

где  хij – значение исследуемой переменой, полученной на i-м уровне фактора (i=1,2,...,т) c j-м порядковым номером (j=1,2,...,n);

Fi – эффект, обусловленный влиянием i-го уровня  фактора;

εij – случайная  компонента, или возмущение, вызванное  влиянием неконтролируемых факторов, т.е. вариацией переменой внутри отдельного уровня.

Основные предпосылки  дисперсионного анализа:

-    математическое ожидание возмущения εij равно нулю для любых i,  т.е.

M(εij) = 0;                                                           (2)

-     возмущения εij взаимно независимы;

- дисперсия переменной xij (или возмущения εij) постоянна для 
любых i, j, т.е.  

                          D(εij) = σ2;                 (3)

- переменная xij (или возмущение εij) имеет нормальный  закон 
распределения N(0;σ2).

Влияние уровней  фактора может быть как фиксированным или систематическим (модель I), так и случайным (модель II).

Пусть, например, необходимо выяснить, имеются ли существенные различия между партиями изделий  по некоторому показателю качества, т.е. проверить влияние на качество одного фактора - партии изделий. Если включить в исследование все партии сырья, то влияние уровня такого фактора систематическое (модель I), а полученные выводы применимы только к тем отдельным партиям, которые привлекались при исследовании. Если же включить только отобранную случайно часть партий, то влияние фактора случайное (модель II). В многофакторных комплексах возможна смешанная модель III, в которой одни факторы имеют случайные уровни, а другие – фиксированные.

процедура однофакторного дисперсионного анализа состоит в проверке гипотезы H0 о том, что имеется одна группа однородных экспериментальных данных против альтернативы о том, что таких групп больше, чем одна. Под однородностью понимается одинаковость средних значений и дисперсий в любом подмножестве данных. При этом дисперсии могут быть как известны, так и неизвестны заранее. Если имеются основания полагать, что известная или неизвестная дисперсия измерений одинакова по всей совокупности данных, то задача однофакторного дисперсионного анализа сводится к  исследованию значимости различия средних в группах данных /1/.

3 Дисперсионный  анализ в контексте статистических  методов

Статистические методы анализа – это методология  измерения результатов деятельности человека, то есть перевода качественных характеристик в количественные.

Основные этапы при проведении статистического анализа:

- содержательный анализ исследуемого  объекта, системы или процесса. На этом  этапе  определяется  набор  входных  и  выходных  параметров (X1 ,..., Xp; Y1 ,..., Yq);

- составление плана сбора исходных данных - значений входных переменных (X1,...,Xp), числа наблюдений n. Этот этап выполняется при активном планировании эксперимента.

- получение исходных данных  и ввод их в компьютер. На этом этапе формируются массивы чисел (x1i ,..., xpi ; y1i ,..., yqi), i=1,..., n, где n - объем выборки.

- первичная статистическая обработка  данных. На данном этапе формируется  статистическое описание рассматриваемых  параметров:

а) построение и анализ статистических зависимостей;

б) корреляционный анализ предназначен для оценивания значимости влияния факторов (X1,...,Xp) на отклик Y;

в) дисперсионный анализ используется для оценивания влияния на отклик Y неколичественных факторов (X1,...,Xp) с  целью выбора среди них наиболее важных;

г) регрессионный анализ предназначен для определения аналитической зависимости отклика Y от количественных факторов X;

К большинству сложных систем применим принцип Парето, согласно которому 20 % факторов определяют свойства системы  на 80 %. Поэтому первоочередной задачей  исследователя имитационной модели является отсеивание несущественных факторов, позволяющее уменьшить размерность задачи оптимизации модели.

Анализ дисперсии оценивает  отклонение наблюдений от общего среднего. Затем вариация разбивается на части, каждая из которых имеет свою причину. Остаточная часть вариации, которую не удается связать с условиями эксперимента, считается его случайной ошибкой. Для подтверждения значимости используется специальный тест - F-статистика.

Дисперсионный анализ определяет, есть ли эффект. Регрессионный анализ позволяет прогнозировать отклик (значение целевой функции) в некоторой точке пространства параметров. Непосредственной задачей регрессионного анализа является оценка коэффициентов регрессии /16/.

Слишком большая размерность выборок  затрудняет проведение статистических анализов, поэтому имеет смысл уменьшить размер выборки.

Применив дисперсионный анализ можно выявить значимость влияния  различных факторов на исследуемую  переменную. Если влияние фактора  окажется несущественным, то этот фактор можно исключить из дальнейшей обработки.

3.1 Векторные  авторегрессии

Макроэконометристы должны уметь решать четыре логически отличающиеся задачи:

- описание данных;

- макроэкономический прогноз;

- структурный вывод;

- анализ политики.

Описание данных означает описание свойств одного или нескольких временных рядов и сообщение этих свойств широкому кругу экономистов. Макроэкономический прогноз означает предсказание курса экономики, обычно на два-три года или меньше (главным образом потому, что прогнозировать на более длинные горизонты слишком трудно). Структурный вывод означает проверку того, соответствуют ли макроэкономические данные конкретной экономической теории. Макроэконометрический анализ политики происходит по нескольким направлениям: с одной стороны, оценивается влияние на экономику гипотетического изменения инструментов политики (например налоговой ставки или краткосрочной процентной ставки), с другой стороны, оценивается влияние изменения правил политики (например переход к новому режиму монетарной политики). Эмпирический макроэкономический исследовательский проект может включать одну или несколько из этих четырех задач. Каждая задача должна быть решена таким образом, чтобы были учтены корреляции между рядами по времени.

Информация о работе Однофакторный дисперсионный анализ: область применения, технология решения задачи