Автор работы: Пользователь скрыл имя, 14 Мая 2014 в 05:46, дипломная работа
Целью написания данной дипломной работы является анализ системы управления рисками на предприятии, функционирующем в условиях рынка.
Поставленная цель исследования предопределила ряд взаимосвязанных задач:
- дать понятие риска, рассмотреть его основные виды;
- проанализировать теоретические аспекты оценки рисков и способы управления рисками;
- проанализировать имеющиеся риски и методику управления рисками на предприятии ОАО «Тамбовский хлебокомбинат».
Введение
Глава 1. Теоретические основы управления финансовыми рисками
1.1 Сущность, содержание, виды и методы оценки финансовых рисков
1.2 Определение типа риска и его измерения
1.3 Методы управления и способы снижения финансового риска
1.4 Система управления рисками - риск-менеджмент
Глава 2. Оценка управления финансовыми рисками на ОАО «Тамбовский хлебокомбинат»
2.1 Характеристика и анализ деятельности ОАО «ТХК»
2.2 Анализ системы управления рисками на предприятии
2.3 Совершенствование системы управления риском используемом на предприятии ОАО «Тамбовский хлебокомбинат»
Глава 3. Основные направления совершенствования деятельности ОАО «ТХК» по минимизации финансовых рисков
3.1 Анализ рисков предприятия и методов, используемых для минимизации риска
3.2 Основные методы и пути минимизации финансовых рисков
Заключение
Список литературы
Объективным методом пользуются для определения вероятности наступления события на основе исчисления частоты, с которой происходит данное событие.
Субъективный метод базируется на использовании субъективных критериев, которые основываются на различных предположениях. К таким предположениям могут относиться суждение оценивающего, его личный опыт, оценка эксперта по рейтингу, мнение аудиторов - консультанта и т.п.
Таким образом, в основе оценки финансовых рисков лежит нахождение зависимости между определенными размерами потерь предприятия и вероятностью их возникновения. Эта зависимость находит выражение в строящейся кривой вероятностей возникновения определенного уровня потерь.
Построение кривой - чрезмерно сложная задача, требующая от служащих, занимающихся вопросами финансового риска, достаточного опытами знаний. Для построения кривой вероятностей возникновения определенного уровня потерь (кривой риска) применяются различные способы: статистический; анализ целесообразности затрат; метод экспертных оценок; аналитический способ; метод аналогий. Среди них следует особо выделить три: статистический способ, метод экспертных оценок, аналитический способ.
Суть статистического способа заключается в том, что изучается статистика потерь и прибылей, имевших место на данном или аналогичном производстве, устанавливаются величина и частотность получения той или иной экономической отдачи, составляется наиболее вероятный прогноз на будущее.
Главные инструменты статистического метода расчета финансового риска:
вариация - изменение количественных показателей при переходе от одного варианта результата к другому.
дисперсия - мера отклонения фактического знания от его среднего значения.
Таким образом, величина риска, или степень риска, может быть измерена двумя критериями: среднее ожидаемое значение, колеблемость (изменчивость) возможного результата.
Среднее ожидаемое значение - это то значение величины события, которое связано с неопределенной ситуацией. Оно является средневзвешенной всех возможных результатов, где вероятность каждого результата используется в качестве частоты, или веса, соответствующего значения. Таким образом, вычисляется тот результат, который предположительно ожидается.
Метод экспертных оценок обычно реализуется путем обработки мнений опытных предпринимателей и специалистов. Он отличается от статистического лишь методом сбора информации для построения кривой риска.
Данный способ предполагает сбор и изучение оценок, сделанных различными специалистами (данного предприятия или внешними экспертами) вероятностей возникновения различных уровней потерь. Эти оценки базируются на учете всех факторов финансового риска, а также статистических данных. Реализация способа экспертных оценок значительно осложняется, если количество показателей оценки невелико.
Аналитический способ построения кривой риска наиболее сложен, поскольку лежащие в основе его элементы теории игр доступны только очень узким специалистам.
Таким образом, существующие способы построения кривой вероятностей возникновения определенного уровня потерь не совсем равноценны, но так или иначе позволяют провести приблизительную оценку общего объема финансового риска.
1.2 Определение типа риска и его измерение
Определение типа риска - это процесс, в котором предприниматель систематически и непрерывно определяет те текущие и потенциальные риски, которые могут иметь неблагоприятные последствия для фирмы. Очевидно, что если потенциальный риск не установлен, то для фирмы невозможно предпринять действия по его минимизации. Большинство управляющих рисками используют подготовленные заранее списки для определения типа риска, а небольшие фирмы, у которых нет управляющих рисками, обычно прибегают к услугам страховых компаний или нанимают консультантов для управления рисками для идентификации и измерения рисков.
После того как риски идентифицированы, необходимо измерить степень воздействия каждого риска на фирму. Этот процесс включает оценку: 1) частоты потерь (или вероятности потерь) и 2) значимости потерь (денежную величину каждой потери). В общем случае степень воздействия каждого риска больше зависит от значимости, чем от частоты потерь. Риск с потенциалом катастрофического ущерба, даже если его вероятность весьма мала, является более серьезной угрозой, чем риск, который, по ожиданиям, происходит более часто, но приносит малые потери.
При использовании вероятности для измерения частоты потерь легко найти вероятность комбинаций рисков. Например, допустим, сто вероятность повреждения от бури для конкретного завода равна 0,03, от наводнения - 0,02, от пожара - 0,01, и все эти три опасности независимы друг от друга. Шанс того, что по крайней мере хоть одна опасность наступит в каком - либо году, определяется по следующему алгоритму. Вероятность того, что не будет потерь от бури, равна 1-0,03=0,97; вероятность избегания потерь от наводнения равна 0,98, а вероятность отсутствия пожара - 0,99. Таким образом, вероятность того, что ни одна из этих опасностей не произойдет, равна 0,97*0,98*0,99=0,941, или 94,1 %. Если вероятность отсутствия опасности равна 94,1 %, то вероятность наступления хотя бы одной опасности равна 1,00-0,941=0,059, или 5,9%. Подобным образом, вероятность наступления всех трех опасностей в один год равна 0,03*0,02*0,01=0,000006, т.е. только шесть случаев на миллион.
Существует несколько способов измерения тяжести потерь. Два из наиболее распространенных: 1) максимальные потери и 2) средние потери. Максимальная потеря - денежная оценка размера потерь, связанная со сценарием самого худшего случая, в то время как средняя потеря - это денежная оценка размера потерь, связанная со случаем конкретной опасности, такие как пожар на заводе, с учетом широкого диапазона возможных значений потерь, которые могут произойти.
Для примера предположим, что максимальный размер потерь от пожара на заводе оценивается в 10 млн руб., в то же время средний размер таких потерь, рассчитанный по прошлой статистике пожаров, равна 500 тыс. руб.. Кроме того, если произошел пожар (у которого вероятность наступления равна 0,01), вероятность того, что пожар приведет к максимальным потерям, составляет 0,05, а вероятность наступления потери среднего размера - 0,04. Тогда в любом году ожидаемая денежная оценка потерь для случая максимального ущерба равна 0,01*0,05*10 000 000 руб.=5000 руб., а ожидаемая денежная оценка потерь для случая среднего ущерба составит 0,01*0,040*500 000 руб.=2000 руб.
Комбинация вероятности наступления случаев с денежными оценками потерь, управляющий рисками может получить полное распределение вероятностей потерь от пожара, которое и является целью определения типа риска и его измерения. С установленным набором распределения вероятностей потерь от пожара управляющий рисками может решить, какую величину риска компании следует взять на себя и какую перевести на страховщика. В этом примере вероятность того, что потери от пожара превысят 100 000 руб. в любом году, равна 0,01*0,08=0,008. Если компания желает, чтобы риск всех потерь от пожара бал меньше, чем 100 000 руб., то ей следует купить страховой полис от пожара с франшизой (освобождение страховщика от возмещения убытков, не превышающих определенную сумму или процент от страховой оценки) на 100 000 руб.. Тогда только риск, связанный с потерями от пожара, превышающими 100 000 руб., будет переведен на страховую компании, а стоимость страхового полиса будет значительно меньше, чем затраты на полное покрытие потерь.
Вероятность наступления события может быть определена объективным или субъективным методом.
Объективный метод определения вероятности основан на вычислении частоты, с которой происходит данное событие. Например, если известно, что при вложении капитала в какое - либо мероприятие прибыль в сумме 250 тыс. руб. была получена в 120 случаях из 200, то вероятность получения такой прибыли составляет 0,6 (120:200)
Субъективный метод определения вероятности основан на использовании субъективных критериев, которые базируются на различных предложениях. К таким предложениям могут относиться: суждение и личный опыт оценивающего, оценка эксперта, мнение финансового консультанта и т.п. Когда вероятность определяется субъективно, то разные люди могут устанавливать разное ее значение для одного и того же события и делать каждый свой выбор.
Важное место при этом занимает экспертная оценка, т.е. проведение экспертизы, обработка и использование ее результатов при обосновании значения вероятности.
Принятие экспортной оценки представляет собой комплекс логических и математико - статистических методов и процедур, связанных с деятельностью экспорта по переработке необходимой для анализа и принятия решении информации. Экспортная оценка основана на использовании способности специалиста (его знаний, умений, опыта, интуиции и т.п.) находить нужное, наиболее эффективное решение.
Величина риска (степень риска) измеряется двумя критериями:
1) среднее ожидаемое значение;
2) колеблемость (изменчивость) возможного
результата. Среднее ожидаемое значение
- это то значение величины
события, которое связано с
То есть, если известно, что при вложении капитала в мероприятие А из 120 случаев прибыль 250 тыс. руб. была получена в 48 случаях (вероятность 0,4), прибыль 200 тыс. руб. была получена в 36 случаях (вероятность 0,3) и прибыль 300 тыс. руб. была получена в 36 случаях (вероятность 0,3), то среднее ожидаемое значение составит (250 x 0,4 + 200 x 0,3 + 300 x 0,3) = 250 тыс. руб.
Аналогично было наедено, что при вложении капитала в мероприятие Б средняя прибыль составила (400 х 0,3 + 300 х 0,5 + 150 х 0,2) = 300 тыс. руб.
Сравнивая две суммы ожидаемой прибыли при вложении капитала в мероприятия А и Б, можно сделать вывод, что при вложении в мероприятие А величину получаемой прибыли колеблется от 200 до 300
тыс. руб. и средняя величина составляет 250 тыс. руб.; при вложении капитала в мероприятие Б величина получаемой прибыли колеблется от 150 до 400 тыс. руб. и средняя величина составляет 300 тыс. руб.
Средняя величина представляет собой обобщенную количественную характеристику и не позволяет принять решения в пользу какого - либо варианта вложения капитала.
Для окончательного принятия решения необходимо измерить колеблемость показателей, т.е. определить меру колеблемости возможного результата.
Колеблемость возможного результата представляет собой степень отклонения ожидаемого значения от средней величины.
Для этого обычно применяются два близко связанных критерия: дисперсия и среднее квадратическое отклонение.
Дисперсия представляет собой средневзвешенное из квадратов отклонений действительных результатов от средних ожидаем
І
б = У(х-х) n/ У n,
І
где б - дисперсия;
х - ожидаемое значение для каждого случая наблюдения;
х - среднее ожидаемое значение;
n - число случаев наблюдения (частоты).
Среднее квадратическое отклонение определяется по формуле:
б= v У(х-х) n/ У n.
При равенстве частот имеем частный случай:
І
б = У(х-х) n/n;
І
б = v У(х-х) n/n.
Среднее квадратическое отклонение является именованной величиной и указывается в тех же единицах, в каких измеряется варьирующий признак. Дисперсия и среднее квадратическое отклонение являются мерами абсолютной колеблемости.
Для анализа обычно используют коэффициент вариации. Он представляет собой отношение среднего квадратического отклонения к средней арифметической и показывает степень отклонения полученных знаний.
V = ±б/х*100%;
где V - коэффициент вариации, %;
б - среднее квадратическое отклонение;
х - среднее ожидаемое значение.
Коэффициент вариации - относительная величина. Поэтому на размер этого коэффициента не оказывают влияние абсолютные значения изучаемого показателя. С его помощью можно сравнить даже колеблемость признаков, выраженных в равных единицах измерения. Коэффициент вариации может изменяться от 0 до 100 %. Чем больше коэффициент, тем сильнее колеблемость. Установлена следующая качественная оценка различных значений коэффициента вариации:
до - 10 % - слабая колеблемость;
10 - 25 % - умеренная колеблемость;
Свыше 25 % - высокая колеблемость.
Расчет дисперсии при вложении капитала в мероприятия А и Б приведен в таблице 1.2.
Таблица 1.1 Расчет дисперсии при вложении капитала в мероприятия А и Б.
Номер события |
Полученная прибыль, тыс. руб. |
Число случаев наблюдения n |
(x-x) |
2 (x-x) |
2 (х-х) *n |
|
Мероприятие А |
||||||
1 |
250 |
48 |
- |
- |
- |
|
2 |
200 |
36 |
-50 |
2500 |
90000 |
|
3 |
300 |
36 |
+50 |
2500 |
90000 |
|
Итого |
Х=250 |
120 |
180000 |
|||
Мероприятие Б |
||||||
1 |
400 |
30 |
+100 |
10000 |
300000 |
|
2 |
300 |
50 |
- |
- |
- |
|
3 |
150 |
20 |
-150 |
22500 |
450000 |
|
Итого |
Х=300 |
100 |
750000 |
|||
Среднее квадратическое отклонение при вложении капитала в мероприятие А составляет:
б = v 180000/120=+(-)38,7;
в мероприятие Б:
б = v 750000/100=+(-)86,6;
Коэффициент вариации для мероприятия А:
V=+(-)38,7/250*100=+(-)15,5 %;
коэффициент вариации для мероприятия Б:
V=+(-)86,6/300*100=+(-)29,8 %.
Коэффициент вариации при вложении капитала в мероприятие А меньше, чем при вложении его в мероприятие Б, что позволяет сделать вывод о принятии решения в пользу вложения капитала в мероприятие А.
Информация о работе Управление финансовыми рисками на предприи