Управление инвестиционными рисками

Автор работы: Пользователь скрыл имя, 31 Марта 2013 в 11:03, дипломная работа

Описание работы

Целью дипломной работы являются обобщение и анализ моделей оценки инвестиционных рисков, изучение теоретической концепции и методологии управления рисков для использования в банковской практике.
Для реализации поставленной цели в дипломной работе будут решены следующие задачи:
•изучение основных видов инвестиционных рисков и их классификации в инвестиционном анализе;
•анализ классических методов оценки риска;
•исследование VaR моделей в оценке инвестиционных рисков,
•разработка методологии управления рисками финансовых активов для применения в российской банковской практике;
•рассмотрение метода по страхованию рисков с помощью хеджирования позиций.

Файлы: 1 файл

Дипломная работа.doc

— 1.63 Мб (Скачать файл)

На заседание правления  банка для последующего утверждения  выносится скорректированный базовый  кредитный лимит.

Текущими лимитами ограничивается общий совокупный риск портфеля корпоративных облигаций, общий совокупный риск вложений в каждую отдельную отрасль и совокупный риск по каждой открытой позиции.

Глобальный объемный лимит по риску портфеля устанавливается  таким образом, чтобы сумма статического и динамического риска по всем позициям портфеля корпоративных облигаций не превышала величины неприемлемого риска.

Объемный лимит вложений в одну отрасль равен сумме статического и динамического риска по всем вложениям в одну отрасль не должна превышать величины предельно допустимого риска.

Текущий лимит на открытую позицию  рассчитывается как сумма статического и динамического риска по каждой отдельной открытой позиции не должна превышать величины максимально  приемлемого риска.

Текущие лимиты не выносятся  на обсуждение заседания правления  банка, а контроль за их соблюдением  осуществляется начальником подразделения  и сотрудником, отвечающим за аналитическую  работу по операциям с корпоративными облигациями.

Чтобы избежать непредвиденных потерь по портфелю, нужно проводить оперативный контроль за рисками и соблюдением лимитов.

Предварительно, перед  каждым новым открытием позиции, осуществляются расчеты рисков. Риски  определяются как в отдельности - по новой позиции, так и, с учетом ранее открытых позиций, по отрасли и по портфелю в целом.

По результатам расчетов, определяется значение текущего лимита на новую позицию. При этом, открытие позиции на всю сумму текущего лимита не должно привести к нарушению  отраслевого и глобального объемных лимитов.

При покупке инструментов на первичном рынке, допускается  открывать позицию на всю сумму  скорректированного базового кредитного лимита, без учета динамического риска, однако при появлении вторичного рынка по бумаге и данных для расчетов динамического риска, размер позиции должен быть уменьшен, в случае необходимости, до величины текущего кредитного лимита.

Отчет по рискам портфеля составляется одновременно с месячным прогнозом развития ситуации на рынке  корпоративных облигаций.

В случае, если по результатам пересмотра, один или несколько лимитов оказываются нарушенными, в портфель следует внести соответствующие коррективы.

Бывают такие ситуации, что в портфелях находятся  ценные бумаги, эмитенты которых не имеют кредитного рейтинга, и иногда бывает сложно определить по параметрам облигации какова степень статического риска у данного заемщика.

После августовского  кризиса 1998 года российский рынок ценных бумаг пережил ряд потрясений, связанных с неспособностью либо нежеланием заемщиков исполнять свои обязательства по облигациям и кредитам.  В результате риск дефолта стал одним из наиболее важных факторов, принимаемых во внимание при оценке долговых ценных бумаг. Традиционной мерой такого риска является превышение уровня доходности к погашению над безрисковой процентной ставкой. Мы предлагаем альтернативный подход, который позволяет математически определить предполагаемую вероятность дефолта по долговым финансовым инструментам, которая является мерой риска дефолта как на развивающихся, так и на развитых рынках. Этот показатель играет весьма важную роль во внутрибанковском планировании.

 Трейдеры по ценным бумагам  могут использовать этот показатель  в частности для торговли относительной  стоимостью (ценные бумаги сходного кредитного качества должны иметь близкие значения вероятности дефолта).

Во внутри банковском планировании, например при приведении стоимости фондирования разных направлений бизнеса внутри банка к безрисковым ставкам, а также для расчетов стоимости хеджирования кредитных рисков, коммерческие банки пользуются этим подходом.

Умножая данный показатель на стоимость актива, можно теоретически определить стоимость хеджирования или в случае кредитования клиента банком размер компенсации за дополнительный риск.

Для расчета предполагаемой вероятности дефолта предположим, что вероятность его наступления в период между любыми двумя последовательными платежами не зависит от срока до погашения ценной бумаги. Такой подход аналогичен тому, который используется при расчете доходности к погашению по облигациям, когда при расчете приведенной стоимости будущих платежей в качестве ставки дисконтирования используется одна и та же процентная ставка — доходность к погашению, рассчитываемая по формуле:

Bond рriсе = ,                                   (3.1)

где YTM — доходность к погашению; Сi , — платеж по облигации в момент времени Тi; YTM = r + Risk Premium, где r — безрисковая процентная ставка.

Для расчета приведенной  стоимости будущих платежей в качестве ставки дисконтирования будет использоваться безрисковая процентная ставка, так как весь риск будет заложен в оценке вероятных платежей.

Пусть Р — вероятность наступления дефолта в период между любыми двумя последовательными платежами. Тогда вероятность того, что дефолт не наступит в первый период выплаты по ценной бумаге, равна (1 - Р), а в i-й период — произведению вероятностей ненаступления дефолта во все предыдущие периоды и (1 - Р), т. е. (1 – P) .

Аналогично вероятность  того, что дефолт наступит именно в i-й период, равна (1 - Р) Р.

В случае если дефолт не наступает, держатель ценной бумаги получает платеж Сi, а в случае дефолта — остаточную стоимость ценной бумаги RV.

Таким образом, с учетом риска наступления дефолта инвестор может рассчитывать    на    получение    i-го    платежа    в     размере                         (1 - Р) Сi,- + (1 – P) P*RV.

При этом текущая приведенная стоимость PV, такого платежа будет равна

PVi = [(1 - Р) С + (1 - P) P*RV]/(1 + r) ,                                  (3.2)

где r — безрисковая доходность (для долларовых облигаций — доходность по US Treasuries или местному инструменту с минимальным риском дефолта).

РРыночная стоимость ценных бумаг равна сумме приведенных стоимостей всех платежей, таким образом, зная рыночную цену, можно рассчитать предполагаемую вероятность дефолта:

Bond price = .                            (3.3)

Такое распределение  вероятности описывается экспоненциальной зависимостью: D(T) = 1 – е — функция распределения вероятности дефолта в течение срока, где р — плотность распределения вероятности дефолта.

Вероятность Р может  быть выражена следующим образом:

Р = 1 - е .                                                                                 (3.4)

Отметим, что для большинства ценных бумаг (Тi - Т ) величина постоянная, т. е. величина Р не зависит от срока до погашения.

Формула для приведенной стоимости  ценной бумаги может быть сведена  к следующей:

Bond price = ,                              (3.5)

и задача сводится к нахождению р. Таким образом, зная величину, можно  определить годовую вероятность дефолта по формуле D = 1 - e . D(T) — вероятность наступления дефолта в течение срока Т, где р — плотность распределения вероятности дефолта (в нашем предположении р не зависит от времени). dD(t) = (1 - D(t))pdt — приращение функции распределения  вероятности дефолта при приращении времени на dt.                 d(l - D(t))/(l - D(t))  =  -pdt. Отсюда D(t) = 1 – e . Вероятность ненаступления дефолта в течение срока Тi равна произведению вероятности ненаступления дефолта в срок Т на (1 - Р), т. е. е (1 - Р) = е . Отсюда P = 1 - e .

Приведенная выше модель может быть использована инвесторами  и трейдерами для сравнения ценных бумаг сходного кредитного качества.

Например, при уровне остаточной стоимости 12% от номинальной  стоимости предполагаемая годовая вероятность дефолта по российским еврооблигациям в начале марта составляла 9 — 11%.

В то же время по ОВГВЗ  составляет от 11% (по 7-му траншу) до 25% (по 4-му траншу), что говорит о несоответствии оценки ценных бумаг участниками рынка и агентством Standard & Poor's, которое недавно уравняло рейтинги ОВГВЗ и еврооблигаций на уровне ССС+.

Коммерческими банками  такая модель может быть использована для расчета маржи над безрисковой  процентной ставкой для заемщиков с различным рейтингом.

Рассмотрим ситуацию, когда в банке существует система внутренних рейтингов заемщиков и некоторые кредиты имеют частичное покрытие, которое может рассматриваться как остаточная стоимость в случае неисполнения заемщиком своих обязательств.

Предполагается выдать кредит заемщику с рейтингом, предполагающим 10%-ю вероятность неисполнения обязательств. Кредит подлежит погашению через год с выплатой половины суммы через полгода и оставшейся суммы через год.

Если безрисковая ставка в данной валюте составляет 15%, а остаточная стоимость 20% от суммы кредита, то согласно приведенной модели процентная ставка должна составлять 23,85%.

В случае изменения рейтинга заемщика (оценки вероятности неисполнения обязательств) с помощью этой же модели можно переоценить стоимость кредита. Например, если через 3 месяца после выдачи кредита рейтинг заемщика предполагает вероятность неисполнения обязательств 15%, а остаточная стоимость оценивается в 10%, то стоимость такого кредита будет составлять 97,3%.

Рассмотрим еще один пример, где применяется данная модель. Компания обращается в банк за возобновлением кредита. С момента подачи последней заявки кредитоспособность компании, по мнению банка, упала и риск кредитования возрос, по крайней мере, на 10 процентных пунктов, до 20%.

По сравнению с предыдущим разом в случае продажи займа на рынке вы получили бы только 90 центов/долл. При той же оценке уровня остаточной стоимости изложенная выше методология предлагает вам повысить ставку займа на 10,4 процентных пунктов, с 23,85 до 34,25%.

Таким образом, модель оценки вероятности дефолта может быть инструментом оценки рыночной стоимости существующих долгов, а также механизмом определения процентных ставок по кредитам с учетом риска заемщика.

Для трейдеров наряду с доходностью к погашению данная модель может служить удобным инструментом для сравнения привлекательности облигаций различных эмитентов, позволяя численно определить уровень риска дефолта.

Для коммерческих банков применение данной методологии осложнено  российскими реалиями, например:

•  дифференциацией  отношений компаний с кредиторами: одним платят, другим нет;

•  отсутствием внутрироссийских рейтингов компаний и др.

Тем не менее внутри банков рейтинги заемщиков должны существовать, поэтому некоторые элементы предложенного подхода могут быть использованы как элементы в создании внутрибанковских методик оценки рисков.

Рассмотрим как производится оценка доходности и риска ценных бумаг с фиксированным доходом, в частности векселей и облигаций.

Сейчас трудно найти  работу, в которой бы проводился вероятностный анализ доходности и риска долговых обязательств. Скорее всего, это связано с тем, что доходность такого рода бумаг не лежит в произвольно широких пределах, как это имеет место для акций и паев взаимных фондов на акциях. Моделируя ценные бумаги с фиксированным доходом, мы знаем параметры выпуска (дата выпуска, цена размещения, дата погашения, число купонов, их размер и периодичность). Единственное, чего мы не знаем, - это то, как будет изменяться котировка этих бумаг на рынке в зависимости от текущей стоимости заемного капитала, которая косвенно может быть оценена уровнем федеральной процентной ставки страны, где осуществляются заимствования.

Идея вероятностного анализа долговых обязательств, представленная здесь,  состоит в том, чтобы отслоить от истории сделок с долговыми обязательствами неслучайную составляющую цены (тренд). Тогда оставшаяся случайная составляющая (шум) цены может рассматриваться нами как случайный процесс с непрерывным временем, в сечении которого лежит нормально распределенная случайная величина с нулевым средним значением и со среднеквадратичным отклонением (СКО), равным s(t), где t – время наблюдения случайного процесса. Ожидаемый вид функции s(t) будет исследован нами позже.

Получим аналитический вид трендов долговых обязательств и для начала рассмотрим простейшие случаи таких выражений, которые имеют место для дисконтных бескупонных облигаций и дисконтных векселей.

Пусть бумага данного  вида эмитирована в момент времени TI по цене N0 < N, где N – номинал ценной бумаги. Тогда разница N – N0  составляет дисконт по бумаге. Параметрами выпуска также определен срок погашения бумаги  TM, когда владельцу бумаги возмещается ее номинал в денежном выражении.

Пусть t – момент времени, когда инвестор собирается приобрести бумагу. Определим ее справедливую рыночную цену С(t). Это выражение и является трендом для случайного процесса цены бумаги.

Пусть время в модели дискретно, а интервал дискретизации  - год. Бумага выпускается в обращение  в начале первого года, а гасится в конце n – го. Тогда рыночная цена дисконтного инструмента, приобретаемого в начале (k+1) – го года обращения бумаги,  имеет вид:

Информация о работе Управление инвестиционными рисками