Автор работы: Пользователь скрыл имя, 24 Сентября 2013 в 15:57, лекция
Мысль о том, что эксперимент можно планировать, восходит к глубокой древности. Наш далекий предок, убедившийся, что острым камнем можно убить даже мамонта, несомненно выдвигал гипотезы, которые после целенаправленной экспериментальной проверки привели к созданию копья, дротика, а затем и лука со стрелами.
Он, однако, не пользовался статистическими методами, поэтому остается непонятным, как он вообще выжил и обеспечил тем самым наше существование.
Совокупность всех различных возможных состояний определяет сложность «черного ящика» и общее число возможных опытов.
Результаты эксперимента используются для получения математической модели объект исследования, которая представляет собой уравнение, связывающее параметр оптимизации и факторы. Такое уравнение называется функцией отклика.
Использование для получения модели всех возможных опытов приводит к абсурдно, большим экспериментам. Задача выбора необходимых для эксперимента опытов, методов математической обработки их результатов и принятия решений – это и есть задача планирования эксперимента. Частный случай этой задачи – планирование экстремального эксперимента, т. е. эксперимента, поставленного с целью поиска оптимальных условий функционирования объекта. Планирование экстремального эксперимента – метод выбора минимального количества опытов, необходимых для отыскания оптимальных условий.
Под экспериментом будем понимать метод научного исследования, когда исследователь активно и целенаправленно воздействует на объект исследования путем создания искусственных условий или использования естественных с целью получения информации о его свойствах.
Важнейшей задачей методов обработки полученной в ходе эксперимента информации является задача построения математической модели изучаемого явления, процесса, объекта. Ее можно использовать и при анализе процессов и при проектировании объектов. Другой задачей обработки полученной в ходе эксперимента информации является задача оптимизации, т.е. нахождения такой комбинации влияющих независимых переменных, при которой выбранный показатель оптимальности принимает экстремальное значение.
Планирование эксперимента – выбор плана эксперимента, удовлетворяющего заданным требованиям, совокупность действий направленных на разработку стратегии экспериментирования (от получения априорной информации до получения работоспособной математической модели или определения оптимальных условий). Это целенаправленное управление экспериментом, реализуемое в условиях неполного знания механизма изучаемого явления.
Под планом эксперимента – понимается совокупность данных, определяющих число, условия и порядок реализации опытов. Под словом опыт в данном случае имеется в виду отдельная, элементарная часть эксперимента. Соответственно, понятие планирование эксперимента, определяемое как процесс разработки плана эксперимента, включает в себя все, что делается по разработке стратегии экспериментирования от начальных до заключительных этапов изучения объекта исследования, т.е. от получения априорной информации до создания работоспособной математической модели объекта исследования или определения оптимальных условий. Планирование способствует значительной интенсификации труда исследователя и сокращению затрат на эксперимент, повышению достоверности полученных результатов исследования.
Основным математическим аппаратом теории планирования эксперимента является теория вероятностей и математическая статистика.
Многомерное факторное пространство – это множество точек, каждая из которых соответствует определенной комбинации факторов. Область возможных комбинаций факторов называется областью возможных (допустимых) планов эксперимента.
Вектор, образуемый выходными параметрами–
Планирование эксперимента проводится в несколько этапов :
Основными концепциями современного подхода к организации эксперимента являются рандомизация, многофакторность и автоматизация.
Сущность рандомизации состоит в следующем. Любое экспериментальное исследование проводится, как правило, в условиях действия систематических ошибок и факторов, которые трудно поддаются учету и контролю. При традиционном подходе к эксперименту исследователи нередко пытаются отделить изучаемое явление от мешающих факторов, как это можно сделать в детерминированных объектах с хорошо изученной структурой. Очевидно, что в недетерминированных объектах с огромным количеством случайных факторов ценность эксперимента, проведенного в особых условиях, не может быть высокой.
Концепция рандомизации предлагает принципиально новый подход к организации выборочных данных эксперимента. План эксперимента составляется таким образом, чтобы рандомизировать, то есть сделать случайными в пространстве и во времени, систематически действующие мешающие факторы. Тогда эти факторы можно рассматривать как случайные величины и, следовательно, учесть статистически их влияние в значении ошибки эксперимента. Иными словами, в противоположность традиционному подходу к эксперименту со стремлением стабилизировать мешающие факторы рандомизация внесла концепцию случая в эксперимент.
Принцип многофакторности отражает новый подход к эксперименту в задачах с многими факторами. При изучении объектов с несколькими факторами согласно этому принципу исследователю предлагается ставить опыты так, чтобы варьировать все факторы сразу в отличие от традиционного подхода, когда исследователь пытается изучать действие каждого фактора при поочередном варьировании. Организация эксперимента с применением многофакторных схем варьирования позволяет повысить точностью оценок параметров подбираемых моделей для недетерминированных объектов, точнее оценить чувствительность выходной зависимой переменной объекта к вариации изучаемых входных независимых переменных.
Развитие технических
Среди основных методов планирования, применяемых на разных этапах исследования, используют:
При пассивном эксперименте существуют только факторы в виде входных контролируемых, но неуправляемых переменных, и экспериментатор находится в положении пассивного наблюдателя. Задача планирования в этом случае сводится к оптимальной организации сбора информации и решению таких вопросов, как выбор количества и частоты измерений, выбор метода обработки результатов измерений.
Наиболее часто целью
Рис 9.1. График регрессионной зависимости y от х
Множество всех точек проведения экспериментов
xi=(xi1, xi2, … , xin), i=1, 2, …, N
представляется с помощью
и называется планом эксперимента
Однофакторный пассивный эксперимент проводится путем выполнения n пар измерений в дискретные моменты времени единственного входного параметра х и соответствующих значений выходного параметра y. Аналитическая зависимость между этими параметрами вследствие случайного характера возмущающих воздействий рассматривается в виде зависимости математического ожидания y от значения х, носящей название регрессионной. Соответствующая линия А В показана на графике (рис.9.1).
Целью однофакторного пассивного эксперимента является построение регрессионной модели. Следует отметить, что регрессионная модель является приближенной оценкой истинной регрессионной зависимости. Для построения модели следует провести обоснованный выбор аппроксимирующей функции. Критериями выбора являются простота, удобство пользования, обеспечение требуемой точности аппроксимации, адекватность. Адекватная регрессионная модель позволяет предсказывать с требуемой точностью значения выходной величины в некоторой области значений входной.
Нередко для выбора аппроксимирующей функции пользуются кривой регрессионной зависимости, проведенной "на глаз".
Чаще всего регрессионная
Приняв такую модель, следует определиться в порядке полинома, после чего вычислить параметры а1, а2 ,…,аm.
В общем случае результаты измерения li значения выходной величины и ее значения yi определяемые регрессионной зависимостью от входного фактора xi, не совпадают, т.е. отлична от нуля разность Di=li–yi, что связано с наличием погрешности измерения и возмущающих воздействий. Обычно считают, что Di не зависит от значения y (т.е. аддитивна) и подчиняется нормальному закону распределения с нулевым математическим ожиданием.
Если выполнено n измерений, то их результаты можно записать в виде:
Система уравнений (9.3) линейна относительно aj. Для нахождения оценок aj из условия минимума Dj необходимо добиться равенства нулю всех частных производных функций по aj. Получим систему нормальных уравнений:
(j=1,2,…,m). (9.4)
Сгруппировав все коэффициенты при неизвестных aj и записав уравнения системы (9.4) в стандартном виде можно вычислить искомые параметры aj методом определителей.
Многофакторный пассивный
x11, x12 ,…, x1k;
x21, x22 ,…, x2k;
.……...............
xn1, xn2 ,…, xnk.,
где xij – значение j входного параметра в i–м измерении (j=1,2,...,n).
В качестве регрессионной модели примем линейный многочлен вида
у = а0 + а1х1 +a2x2+ …+ аkхk. (9.5)
Заменим переменные их центрированными значениями:
Тогда модель принимает вид
На основе (9.6) составляется система нормальных уравнений вида (9.4) (с заменой m на k) и вычисляются оценки параметров . Затем вычисляется оценка
и осуществляется переход к исходной модели (9.5).