Понятие и значение прикладных исследований

Автор работы: Пользователь скрыл имя, 05 Ноября 2012 в 17:07, реферат

Описание работы

Прикладные исследования– научные исследования, направленные на решение социально-практических проблем.
Прикладные исследования– научные исследования, направленные на решение социально-практических проблем.
Наука (science) сфера человеческой деятельности, функцией которой является выработка и теоретическая систематизация объективных знаний о действительности.

Файлы: 1 файл

инов. менеджмент.docx

— 26.52 Кб (Скачать файл)

 

 

 

 

 

 

 

 

Понятие и значение прикладных исследований.

Прикладные исследования–   научные исследования, направленные на решение социально-практических проблем.

Наука (science) сфера человеческой деятельности, функцией которой является выработка и теоретическая систематизация объективных знаний о действительности.

  Непосредственные цели науки – описание, объяснение и предсказание процессов и явлений действительности, составляющих предмет её изучения на основе открываемых ею законов, то есть в широком смысле – теоретическое отражение действительности.

 По своей направленности, по отношению к практике отдельные  науки принято подразделять на  фундаментальные науки (fundamental science) и прикладные науки (applied science). Задачей фундаментальных наук является познание законов, управляющих поведением и взаимодействием базисных структур природы, общества и мышления. Эти законы и структуры изучаются в «чистом виде», как таковые, безотносительно к их возможному использованию. Непосредственная цель прикладных наук – применение фундаментальных наук для решения не только познавательных, но и социально-практических проблем.

  Деление исследований на фундаментальные и прикладные достаточно условно, так как отдельные результаты фундаментальных исследований могут иметь непосредственную практическую ценность, а в результате прикладных исследований могут быть получены научные открытия.

Три этапа прикладных исследований.

Прикладные исследования при решении производственных проблем  составляют три этапа.

Первый этап исследований производственной проблемы – научная постановка задачи – содержит выявление и описание фактов, формулировку проблемы, цели и гипотезы исследований.

 Постановка задачи  является одним из наиболее  ответственных этапов принятия  решений. «Самым распространённым  источником ошибок в управлении  предприятием является чрезмерное  внимание, которое уделяется поиску  правильного ответа, вместо того, чтобы искать правильный вопрос». Точное решение, полученное при неправильной постановке задачи приводит только к появлению новых проблем. Очевидная, на первый взгляд, причина возникновения проблемы, может на самом деле быть только следствием более сложных и менее заметных процессов. По существу, постановка задачи сводится к изучению сложившейся ситуации, выявлению того, что именно и почему не устраивает менеджера и описанию ситуации, которую необходимо достигнуть. Изучение ситуации с точки зрения цели организации, выявление факторов, обусловивших ее появление и существование, соизмерение разного рода затрат и результатов дают основание менеджеру отделить более важное от менее важного и сформулировать условия, определяющие допустимость решения и его качество.

  Эффективность формулировки проблемы зависит от объекта исследований. В естественных и технических науках вследствие материального характера исследуемого объекта реальность фактов не вызывает трудностей с их объективным выявлением, а точность описания зависит от используемых приборов. Проблема как объект исследования операций носит идеальный характер и является противоречием между существующим и целью исследования – желаемым состоянием. При описании существующей ситуации в качестве фактов выступают внешние проявления проблемы, однако их соответствие ей далеко не так однозначно, как в случае описания фактов в естественных и технических науках. Это приводит, в частности, к тому, что затраты отождествляются с результатами, а точность применяемого математического метода – с адекватностью получаемых с его помощью решений исследуемой проблемы. Ф. Энгельс в этой связи писал: «Девственное состояние абсолютной значимости, неопровержимой доказанности всего математического навсегда ушло в прошлое, наступила эра разногласий, и мы дошли до того, что большинство людей дифференцирует и интегрирует не потому, что они понимают, что они делают, а просто потому, что верят в это, так как до сих пор результат всегда получался правильный». И уже наш современник М. Блауг, рассматривая состояние экономической науки, пишет: «Экономисты постепенно подменили свой предмет, обратив его в некую Социальную Математику, в которой аналитическая строгость, как её понимаю на математических факультетах, – это всё, а эмпирическая адекватность, как её понимают на физических факультетах, – ничто».

  Ещё более сложным оказывается вопрос объективного описания второй составляющей проблемы – желательной ситуации и, соответственно, следующих из неё определений цели и гипотезы исследований. Все это зависит от объективности описания существующей ситуации и лица, принимающего решение выявить цели систем, в которые входит исследуемый объект. Здесь методические ошибки могут привести к тому, что попытка решения одной проблемы приведет к появлению новых. Многие новые проблемы – уплотнение почвы тяжёлой техникой, инерционность управленческого аппарата, вследствие увеличения численности сотрудников и связей, утилизация стоков животноводческих комплексов и др. – возникали в результате деятельности человека, направленной на решение других проблем.

  Анализ первого этапа научной постановки управленческого решения показывает, что если в естественных и технических науках основным источником субъективных искажений и, соответственно, снижения эффективности этого этапа является полнота описания реального факта, достигаемая в основном только за счет используемых приборов, то в случае исследования производственных проблем добавляются вопросы адекватного восприятия объекта учеными или/и менеджерами, зависящие от применяемой ими методологии. На первом этапе исследования проблем высока вероятность формулировки ложных проблем – «проблемоидов» и псевдозадач, решение которых не будет представлять какой-либо практической ценности, а внедрение может привести к нежелательным последствиям. В этом случае эффективность управленческого решения будет нулевой или даже отрицательной. 

Второй этап исследования производственной проблемы – разработка математической модели.

  Объективность при этом должна обеспечиваться использованием научных принципов оценки ситуаций, а также методов и моделей принятия решений. Моделирование, особенно с использованием компьютеров, является основным теоретическим инструментом системных исследований прикладной ориентации в управлении сложными системами. Содержательная часть процесса моделирования (выбор показателей, факторов, зависимостей) включается в экономическую теорию, а техническая (под которой в 9 случаях из 10 понимается построение тех или иных статистических моделей) – в эконометрику. Таким образом, экономико-математическое моделирование оказывается, с одной стороны, разорванным, с другой – усечённым. И вопросы взаимосвязи всех этапов моделирования, корректности интерпретации результатов моделирования и, следовательно, ценности рекомендаций на основе моделей оказываются как бы висящими в воздухе.

  Глубокая внутренняя связь моделирования и системного подхода (systems approach) прослеживается уже в способе полагания объекта, поскольку систему, представляющую объект, по которому принимается решение, можно рассматривать как модель последнего. Наряду с этим представление модели сложного объекта как системы оказывается во многих случаях эффективным приёмом его исследования. Системное моделирование – это форма моделирования, для которой характерно представление объекта исследования в виде системы, многомодельность, итеративность построения системной модели, интерактивность. В этой плодотворности соединения системного подхода и моделирования заключается важный фактор, способствующий их взаимодействию и взаимопроникновению.

 Особо следует выделить  принципиальную необходимость введения  в системную модель неформализуемых элементов в соответствии с принципом внешнего дополнения Ст. Бира (Beer Stafford). Наличие последних обусловливает включение в модель субъекта, который призван осуществлять взаимодействие формализованных и неформализованных элементов системной модели. Эта особенность даёт возможность более тесно реализовать единство субъекта и объекта, ориентацию на целевые установки принимаемых решений. Именно итеративность и диалоговость системного моделирования дают возможность снять противоречия между формализованными и неформализованными элементами всей структуры моделирования, возникающими в процессе моделирования.

 При моделировании,  так же как и на первом  этапе исследований, который можно  считать построением концептуальной  модели проблемы, происходит свёртка,  ограничение полученной информации  в форме, удобной в дальнейшем  исследовании. Ограничение разнообразия  необходимо для упорядочения количества информации, поступающей к объекту. Ограничение разнообразия исходной информации (здесь ею является уже концептуальная модель проблемы) при математическом моделировании происходит вследствие трёх ограничений, имманентных этому методу, - ограниченности математического языка, метода и собственно модели.

 Однозначность математического  языка является одновременно  и «плюсом», и «минусом». Достоинство  в том, что она не допускает  ошибок, но это же свойство  ограничивает возможность достаточно  полного описания объекта. С  повышением информации в модели  эвристическая функция моделирования  растет не прямо пропорционально  количеству учтенной информации, а по экстремальному закону, т.  е. эффективность моделирования  растет лишь до определенного  предела, после которого она  падает. Иными словами, использование  математики гарантирует точность, но не правильность получаемого  решения. В исследованиях физических  объектов, информационная сложность  которых вследствие определяющих  их причинно-следственных связей  относительно невысока, уровень  потерь и искажения информации  будут значительно ниже, чем при  исследовании социально-экономических  объектов. Ограниченность математического  языка лежит в основе теории  о неполноте формальных систем  К. Гёделя (Godel Kurt) и принципа внешнего дополнения Ст. Бира (Beer Stafford). Её уровень, естественно, во многом носит исторический, а не абсолютный характер. По мере развития математики возможности ее будут расти. Однако в настоящее время многие российские и зарубежные математики, философы, экономисты, представители других научных направлений отмечают ограниченные возможности адекватного математического описания социально-экономических явлений.

  Практически неограниченный диапазон применения математических методов создает впечатление их «всеядности», универсальности. И основным подтверждением этого чаще всего выступает взаимная аргументация этих двух характеристик, а не эффективность использования результатов моделирования на практике. Немаловажное влияние на это оказывает и то, что при описании методологических особенностей математических методов и моделей многие свойства, которыми они должны обладать, чтобы обеспечить адекватное решение, выдаются и, соответственно воспринимаются как свойства, имманентные описанным методам и моделям. Как любое специальное средство, конкретный метод накладывает свои ограничения на обрабатываемую информацию: выделяет одни аспекты, устраняет и искривляет другие, тем самым приводит к искажению описываемой с его помощью реальной ситуации в целом. Авторы ряда работ, количество которых не идет ни в какие сравнения с объемом публикаций по разработкам теорий и методов математического моделирования, приводят различные аргументы, подтверждающие принципиальную ограниченность их использования для описания реальных процессов, происходящих в общественном производстве. В узких рамках методологии, разработанной оптимизационным подходом, невозможно совместить поиск наилучшего решения (или оптимального управления) с признанием принципиальной ограниченности отражения реальной моделью. Любая, даже самая тонкая и изощренная постановка, где указанное противоречие будет как бы разрешаться, на деле приводит к еще более серьезным и очевидным новым противоречиям. На это ещё «накладываются» ошибки разделения и объединения систем и подсистем при использовании методов программирования. Применение предметных концепций при выборе математического метода и модели в решении конкретной задачи приводит к тому, что, допустим, в технических науках с помощью одних и тех же формул проводится обоснование мощности осветительных устройств для квартиры и железнодорожной станции. Так же и формализация задачи оптимизации деятельности предприятия, а то и целой отрасли отличается от задачи об оптимальном раскрое заготовки в основном только количеством переменных и уравнений. Однако в этом случае следствием такого «раскроя» будет «механический» разрыв огромного количества связей, сложность и неопределенность которых еще не всегда доступны достаточно точному описанию языком современной математики. Некорректность традиционного подхода к обоснованию структуры модели исследуемой ситуации можно показать, сравнивая задачи обоснования состава кормов и поголовья животных в хозяйстве. Если следовать традиционной методике, их можно отнести к одному классу и решать одним и тем же методом. В то же время если результат первой оказывает существенное влияние только на себестоимость продукции, то второй требует учета социальных интересов, вопросов, связанных с охраной окружающей среды и т.д. Таким образом, во втором случае необходимо использовать метод, обладающий большим разнообразием возможностей описания, чем для первой, иначе нельзя будет построить адекватную математическую модель и получить управленческое решение, имеющее практическую ценность.

  Задача, решение которой в конечном итоге обеспечивают методы оптимизации, будь то математическое программирование или регрессионный анализ, сводится к поиску, хотя и не тривиального (вследствие многообразия возможных вариантов), но в то же время и не принципиально нового результата, так как поиск происходит в диапазоне, границы которого определяются знаниями об исследуемом процессе. В случае постановки инженерных, оперативных или тактических задач для технических или простых социально-экономических объектов, позволяющих исследователю или менеджеру дать их полное формальное описание и обосновать диапазоны реальных альтернатив, достаточность и эффективность использования оптимизационных методов не вызывает сомнения. По мере роста сложности объектов исследований при решении стратегических проблем выбора направлений совершенствования технических и социально-экономических систем оптимизационные методы могут выполнять только вспомогательные функции.

 Структура того или  иного «типичного» вида моделей  накладывает еще более жесткие  ограничения на возможности представления  необходимого уровня разнообразия  в описании исследуемого объекта.  Поэтому некоторые работы по  математическому моделированию  и рекомендуют начинать исследование  с выбора вида модели, а потом  уже проводить постановку задачи  исследований таким образом, чтобы  ее легче было «вписать» в  выбранную модель. Такой подход  облегчает построение модели  и эффективен, если целью исследований  является именно построение математической  модели, а не получение решения проблемы. Последующие аналогичные по своей природе искажения и потери информации вызываются ограничениями алгоритмов и программных языков, возможностями ЭВМ.

 Структурно-функциональный анализ свидетельствует о том, что хотя все процедуры, связанные с построением математической модели и получением итоговых данных на ЭВМ, логически обоснованы, они не содержат никаких методологических свойств, гарантирующих адекватность этого результата и соответствующего управленческого решения реальной проблеме. Формирование критериев эффективности (оптимизации) при этом может проводиться независимо от объективных законов общественного развития, а основным критерием разработки математической модели становятся условия скорейшего построения алгоритма на основе применения «типового» алгоритма. Менеджер/исследователь может «подгонять» реальную проблему под структуру освоенного им математического метода или программного обеспечения ПЭВМ. Ориентация на обязательное построение математической модели в рамках одного метода приводит к исключению из исследования проблемы факторов, не поддающихся количественной оценке. Описание причинно-следственных связей, приводит к необоснованному применению принципов аддитивности. Результат при этом будет оптимальным только для того весьма упрощенного и искаженного образа реального объекта, который представляет собой математическая модель после нескольких «трансформаций», проведенных с помощью средств, уровень разнообразия и точность которых еще значительно отстает от сложности социально-экономических проблем.

Информация о работе Понятие и значение прикладных исследований