Атомно силовой микроскоп

Автор работы: Пользователь скрыл имя, 02 Декабря 2014 в 20:09, реферат

Описание работы

Атомный силовой микроскоп был разработан в 1986 году, через четыре года после изобретения сканирующего туннельного микроскопа. Первый промышленный АСМ был изготовлен в США фирмой Диджитал инструментс (Digital Instruments) в 1989 году. Сегодня в различных лабораториях имеется более 1000 таких приборов, в России - около 60. Атомный силовой микроскоп позволяет наблюдать рельеф поверхности с большим пространственным разрешением - несколько ангстрем вдоль поверхности и сотые доли ангстрема по высоте (1 ангстрем = 1 Å = 10-8 см). При таком разрешении удается увидеть отдельные молекулы, составляющие твердое тело.

Файлы: 1 файл

АСМ Microsoft Office Word (5).docx

— 262.98 Кб (Скачать файл)

Обычный АСМ не в состоянии сканировать изображения так же быстро, как это делает РЭМ. Для получения АСМ-скана, как правило, требуется несколько минут, в то время как РЭМ после откачки способен работать практически в реальном масштабе времени, хотя и с относительно невысоким качеством. Достаточно медленная скорость развёртки АСМ часто приводит к появлению на изображении искажений, вызываемых тепловым дрейфом ограничивая тем самым возможности микроскопа при точном измерении элементов сканируемого рельефа. Однако было предложено несколько быстродействующих конструкций, чтобы увеличить производительность сканирования микроскопа, включая зондовый микроскоп, который был впоследствии назван видеоАСМ (удовлетворительного качества изображения были получены на видеоАСМ с частотой телевизионной развёртки, т.е. быстрее, чем на обычном РЭМ). Для коррекции искажений от термодрейфа было также предложено несколько методов.

Изображения, полученные на АСМ, могут быть искажены гистерезисом пьезокерамического материала сканера, а также перекрёстными паразитными связями, действующими между X, Y, Z элементами сканера, что может потребовать программной коррекции. Современные АСМ используют программное обеспечение, которое вносит исправления в реальном масштабе времени (например, особенность-ориентированное сканирование, особенность-ориентированное позиционирование, либо сканеры, снабжённые замкнутыми следящими системами, которые практически устраняют данные проблемы. Некоторые АСМ вместо пьезотрубки используют XY и Z элементы сканера механически несвязанные друг с другом, что также позволяет исключить часть паразитных связей.

АСМ можно использовать для определения типа атома в кристаллической решётке.

8.Усовершенствования атомного  силового микроскопа

Атомные силовые микроскопы существуют давно и, кажется, отработаны в совершенстве. Тем интереснее появление новинки, превосходящей прежние системы по всем параметрам и, к тому же, впервые способной снимать видео в наномасштабе.Атомные силовые микроскопы способны показывать поверхность образцов практически на молекулярном уровне. Существует несколько вариантов таких устройств, но всех их объединяет одно - сверхтонкая игла, сужающаяся на острие едва ли не до единственного атома. Эта игла, говоря упрощённо, ощупывает рельеф изучаемой поверхности.Она приводится в движение очень чувствительным и прецизионным приводом, который управляется компьютером.Дальше начинаются вариации - как именно снимать эти движения иглы (в частности, тут используется лазер и зеркала), и вообще - точно позиционировать её при движении вдоль образца.

Например, в ряде моделей игла управляется с помощью обратной связи по величине туннельного тока - потока электронов, проскакивающих между иглой и образцом при приближении иглы почти до касания поверхности.И всё же результат работы такой машины один: геометрия поверхности, построенная компьютером после сканирования (последовательного прохода иглой большого ряда "дорожек", словно луч в кинескопе телевизора).В 2006 году в США был продемонстрирован необычный атомный микроскоп, который не просто на голову превосходит прежние модели по ключевым параметрам, но в единственном проходе получает сразу: рельеф образца, его физические и некоторые химические свойства.Называется эта новая удивительная система "Интегрированный считывающий и активный чувствительный к усилию наконечник" (Force sensing and Integrated Readout Active Tip - FIRAT).FIRAT устраняет два главных неудобства прежних систем: в отличие от них он способен работать так быстро, что может даже снимать нановидеоролики, а кроме того, он одновременно выдаёт ещё и информацию о физико-химических особенностях поверхности.Как говорят авторы агрегата, FIRAT работает как помесь палки Пого (на которую встают и прыгают, отталкиваясь от земли) и микрофона.В одном варианте исследования мембрана с острым наконечником перемещается к образцу, но ещё до того, как касается его, испытывает с его стороны силу молекулярного притяжения. И как диафрагма микрофона новый сенсор чувствует эти свои отклонения ещё на дистанции.А когда наконечник дотрагивается до поверхности, её эластичность и прочность определяют прогиб материала под иглой - её колебания.В результате, обрабатывая сигнал о положении иглы во время сканирования, учёные могут получить массу данных. Не только рельеф образца, но и карту адгезии, прочности, эластичности, вязкости.

Интересно, что авторы FIRAT сумели уменьшить размер привода сканирующего наконечника до размеров иголки, вместо прежних очень крупных узлов. А снижение инерционности привода позволило новой машине проходить до 60 линий, идущих поперёк образца, каждую секунду.Новая технология окажется неоценимой для многих типов исследований, в особенности для измерения параметров микроэлектронных устройств и наблюдения в режиме реального времени за биологическими взаимодействиями в молекулярном масштабе.Самое примечательное в изобретении - новая система сканирования может быть добавлена без кардинальных переделок к существующим атомным силовым микроскопам.

9.Принцип действия атомного  силового микроскопа

 

На малых расстояниях между двумя атомами (около одного ангстрема, 1 ? = 10-8 см) действуют силы отталкивания, а на больших - силы притяжения. Совершенно аналогичные силы действуют и между любыми сближающимися телами. В сканирующем атомном силовом микроскопе такими телами служат исследуемая поверхность и скользящее над нею острие. Обычно в приборе используется алмазная игла, которая плавно скользит над поверхностью образца (как говорят, сканирует эту поверхность). При изменении силы F, действующей между поверхностью и острием, пружинка П, на которой оно закреплено, отклоняется, и такое отклонение регистрируется датчиком D. В качестве датчика в АСМ могут использоваться любые особо точные и чувствительные - прецизионные - измерители перемещений, например оптические, емкостные или туннельные датчики. На рисунке 1.8 показан именно последний тип датчика, - фактически это такая же игла, какая применяется в сканирующем туннельном микроскопе.

Величина отклонения упругого элемента (пружинки) несет информацию о высоте рельефа - топографии поверхности и, кроме того, об особенностях межатомных взаимодействий. Можно сказать, что в атомном силовом микроскопе сканирование исследуемого образца происходит по «поверхности постоянной силы».

Принципы же прецизионного управления основаны на обратной связи и улавливают самые ничтожные изменения рельефа поверхности.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Список использованной литературы

1. http://traditio-ru.org/

2. http://chem21.info/info/1624647/

3. http://n-t.ru/nj/nz/1989/0901.htm

4. http://www.bibliofond.ru/view.aspx?id=583752

5. http://www.nanometer.ru/2007/06/06/kantilever_2629.html

6. http://www.ntmdt.ru

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Информация о работе Атомно силовой микроскоп