Автор работы: Пользователь скрыл имя, 28 Апреля 2015 в 13:26, сочинение
Целью данного исследования является: во-первых, рассмотрение основных факторов, влияющих на объем инновационного потенциала для субъектов РФ, и во-вторых, анализ полученной модели и определение прогнозных оценок развития НИОКР в России.
1. Введение………………………………………………………………………………… 3
2. Анализ данных…………………………………………………………………………. 4
a. Источник данных………………………………………………………………. 4
b. Описание переменных…………………………………………………………. 5
c. Описательная статистика ……………………………………………………… 6
d. Выбросы…………………………………………………………………………..7
3. Теоретическая модель………………………………………………………………….10
a. Взаимосвязь переменных………………………………………………………10
b. Матрица корреляций, ожидаемые знаки коэффициентов…………………...11
c. Анализ мультиколлинеарности………………………………………………..12
d. Графики, предполагаемые функциональные связи…………………………..14
4. Выбор модели……………………………………………………………………….......15
a. Правдоподобные знаки, значимость регрессии в целом……………………..15
b. Гистограмма остатков, гетероскедастичность ……………………………….16
c. Верная/неверная спецификация модели, значимость коэффициентов, скорректированный R2........................................................................................16
5. Анализ выбранной модели……………………………………………………………..20
a. Интерпретация коэффициентов……………………………………………….20
b. Тест Вальда ……………………………………………………………………..20
c. Доверительные интервалы……………………………………………………..21
d. Прогнозирование ………………………………………………………………21
6. Заключение……………………………………………………………………………...23
7. Список литературы……………………………………………………………………..24
8. Приложение №1………………………………………………………………………...25
Приложение №2………………………………………………………………………...28
Приложение №3………………………………………………………………………...29
Приложение №4………………………………………………………………………...30
Приложение №5………………………………………………………………………...31
Приложение №6………………………………………………………………………...32
Приложение №7………………………………………………………………………...33
Приложение №8…………………………………………………………………….......34
Приложение №9………………………………………………………………………...35
Heteroskedasticity Test: White |
||||
F-statistic |
3.950521 |
Prob. F(19,55) |
0.0000 | |
Obs*R-squared |
43.28385 |
Prob. Chi-Square(19) |
0.0012 | |
Scaled explained SS |
81.34364 |
Prob. Chi-Square(19) |
0.0000 | |
Test Equation: |
||||
Dependent Variable: RESID^2 |
||||
Method: Least Squares |
||||
Date: 05/06/14 Time: 15:47 |
||||
Sample: 1 80 IF FUNDING<300000000 AND VOLUME<2500000 | ||||
Included observations: 75 |
||||
Collinear test regressors dropped from specification | ||||
Variable |
Coefficient |
Std. Error |
t-Statistic |
Prob. |
C |
-2.25E+22 |
3.35E+23 |
-0.067203 |
0.9467 |
TECHNOLOGY^2 |
-1.17E+16 |
1.08E+16 |
-1.090319 |
0.2803 |
TECHNOLOGY*STATUS |
3.74E+19 |
9.40E+19 |
0.397985 |
0.6922 |
TECHNOLOGY*FIRMS |
2.68E+18 |
1.64E+18 |
1.627723 |
0.1093 |
TECHNOLOGY*NCOSTS |
-2.88E+19 |
1.76E+19 |
-1.637185 |
0.1073 |
TECHNOLOGY*FUNDING |
2.56E+11 |
4.24E+11 |
0.604926 |
0.5477 |
TECHNOLOGY |
1.93E+20 |
9.79E+19 |
1.972397 |
0.0536 |
STATUS^2 |
1.78E+23 |
2.22E+24 |
0.080533 |
0.9361 |
STATUS*FIRMS |
-1.87E+21 |
8.86E+21 |
-0.211014 |
0.8337 |
STATUS*NCOSTS |
-8.20E+20 |
3.40E+23 |
-0.002414 |
0.9981 |
STATUS*FUNDING |
-8.79E+15 |
9.00E+15 |
-0.976946 |
0.3329 |
FIRMS^2 |
-4.13E+19 |
3.32E+19 |
-1.243294 |
0.2190 |
FIRMS*NCOSTS |
7.40E+20 |
1.69E+21 |
0.439077 |
0.6623 |
FIRMS*FUNDING |
7.12E+12 |
6.07E+13 |
0.117135 |
0.9072 |
FIRMS |
-5.56E+21 |
1.23E+22 |
-0.452672 |
0.6526 |
NCOSTS^2 |
2.49E+21 |
1.18E+22 |
0.211456 |
0.8333 |
NCOSTS*FUNDING |
-3.77E+14 |
6.30E+14 |
-0.598618 |
0.5519 |
NCOSTS |
-9.07E+21 |
1.29E+23 |
-0.070208 |
0.9443 |
FUNDING^2 |
3027160. |
6436636. |
0.470302 |
0.6400 |
FUNDING |
1.52E+15 |
2.63E+15 |
0.579583 |
0.5646 |
R-squared |
0.577118 |
Mean dependent var |
5.87E+22 | |
Adjusted R-squared |
0.431031 |
S.D. dependent var |
1.25E+23 | |
S.E. of regression |
9.39E+22 |
Akaike info criterion |
108.8549 | |
Sum squared resid |
4.85E+47 |
Schwarz criterion |
109.4729 | |
Log likelihood |
-4062.057 |
Hannan-Quinn criter. |
109.1016 | |
F-statistic |
3.950521 |
Durbin-Watson stat |
2.122850 | |
Prob(F-statistic) |
0.000034 |
|||
Dependent Variable: NVOLUME |
||||
Method: Least Squares |
||||
Date: 05/06/14 Time: 16:08 |
||||
Sample: 1 80 IF FUNDING<300000000 AND VOLUME<2500000 | ||||
Included observations: 75 |
||||
Weighting series: 1/SGM |
||||
Weight type: Inverse standard deviation (EViews default scaling) | ||||
White heteroskedasticity-consistent standard errors & covariance | ||||
Variable |
Coefficient |
Std. Error |
t-Statistic |
Prob. |
C |
-1.80E+10 |
5.84E+10 |
-0.308812 |
0.7584 |
TECHNOLOGY |
47751682 |
21031577 |
2.270476 |
0.0263 |
STATUS |
-7.33E+10 |
9.46E+10 |
-0.774748 |
0.4411 |
FIRMS |
5.20E+09 |
2.31E+09 |
2.245481 |
0.0279 |
NCOSTS |
-6.58E+09 |
1.50E+10 |
-0.437731 |
0.6629 |
FUNDING |
-19.66546 |
188.9879 |
-0.104057 |
0.9174 |
Weighted Statistics |
||||
R-squared |
0.350041 |
Mean dependent var |
9.73E+10 | |
Adjusted R-squared |
0.302943 |
S.D. dependent var |
1.55E+11 | |
S.E. of regression |
1.44E+11 |
Akaike info criterion |
54.30467 | |
Sum squared resid |
1.44E+24 |
Schwarz criterion |
54.49007 | |
Log likelihood |
-2030.425 |
Hannan-Quinn criter. |
54.37870 | |
F-statistic |
7.432121 |
Durbin-Watson stat |
2.220460 | |
Prob(F-statistic) |
0.000013 |
Weighted mean dep. |
5.43E+10 | |
Wald F-statistic |
6.881851 |
Prob(Wald F-statistic) |
0.000029 | |
Unweighted Statistics |
||||
R-squared |
0.626696 |
Mean dependent var |
2.20E+11 | |
Adjusted R-squared |
0.599645 |
S.D. dependent var |
5.18E+11 | |
S.E. of regression |
3.28E+11 |
Sum squared resid |
7.43E+24 | |
Durbin-Watson stat |
2.030639 |
|||
Heteroskedasticity Test: White |
||||
F-statistic |
0.414897 |
Prob. F(20,54) |
0.9835 | |
Obs*R-squared |
9.989822 |
Prob. Chi-Square(20) |
0.9684 | |
Scaled explained SS |
26.71833 |
Prob. Chi-Square(20) |
0.1434 | |
Test Equation: |
||||
Dependent Variable: WGT_RESID^2 |
||||
Method: Least Squares |
||||
Date: 05/06/14 Time: 16:09 |
||||
Sample: 1 80 IF FUNDING<300000000 AND VOLUME<2500000 | ||||
Included observations: 75 |
||||
White heteroskedasticity-consistent standard errors & covariance | ||||
Collinear test regressors dropped from specification | ||||
Variable |
Coefficient |
Std. Error |
t-Statistic |
Prob. |
C |
-4.45E+22 |
1.19E+23 |
-0.375190 |
0.7090 |
TECHNOLOGY^2*WGT^2 |
3.20E+14 |
2.20E+16 |
0.014559 |
0.9884 |
TECHNOLOGY*STATUS*WGT^2 |
4.66E+20 |
3.72E+20 |
1.254263 |
0.2151 |
TECHNOLOGY*FIRMS*WGT^2 |
2.83E+18 |
1.40E+18 |
2.015820 |
0.0488 |
TECHNOLOGY*NCOSTS*WGT^2 |
7.73E+17 |
1.47E+19 |
0.052634 |
0.9582 |
TECHNOLOGY*FUNDING*WGT^2 |
-5.30E+10 |
2.45E+11 |
-0.216845 |
0.8291 |
TECHNOLOGY*WGT^2 |
-1.29E+19 |
6.88E+19 |
-0.188178 |
0.8514 |
STATUS^2*WGT^2 |
1.65E+25 |
8.76E+24 |
1.888125 |
0.0644 |
STATUS*FIRMS*WGT^2 |
7.20E+22 |
3.97E+22 |
1.813896 |
0.0753 |
STATUS*NCOSTS*WGT^2 |
-2.56E+24 |
1.36E+24 |
-1.885312 |
0.0648 |
STATUS*FUNDING*WGT^2 |
-5.31E+16 |
2.70E+16 |
-1.968058 |
0.0542 |
FIRMS^2*WGT^2 |
-1.30E+20 |
7.77E+19 |
-1.671643 |
0.1004 |
FIRMS*NCOSTS*WGT^2 |
1.10E+21 |
9.08E+20 |
1.216905 |
0.2289 |
FIRMS*FUNDING*WGT^2 |
4.10E+13 |
3.82E+13 |
1.074049 |
0.2876 |
FIRMS*WGT^2 |
-4.76E+21 |
4.12E+21 |
-1.155668 |
0.2529 |
NCOSTS^2*WGT^2 |
-1.62E+21 |
2.72E+21 |
-0.598055 |
0.5523 |
NCOSTS*FUNDING*WGT^2 |
-2.44E+14 |
1.81E+14 |
-1.344138 |
0.1845 |
NCOSTS*WGT^2 |
1.62E+22 |
2.22E+22 |
0.728645 |
0.4694 |
FUNDING^2*WGT^2 |
-571398.4 |
2063163. |
-0.276953 |
0.7829 |
FUNDING*WGT^2 |
9.57E+14 |
6.58E+14 |
1.455527 |
0.1513 |
WGT^2 |
-2.51E+22 |
4.14E+22 |
-0.605985 |
0.5471 |
R-squared |
0.133198 |
Mean dependent var |
1.92E+22 | |
Adjusted R-squared |
-0.187840 |
S.D. dependent var |
4.85E+22 | |
S.E. of regression |
5.28E+22 |
Akaike info criterion |
107.7122 | |
Sum squared resid |
1.51E+47 |
Schwarz criterion |
108.3611 | |
Log likelihood |
-4018.208 |
Hannan-Quinn criter. |
107.9713 | |
F-statistic |
0.414897 |
Durbin-Watson stat |
2.268436 | |
Prob(F-statistic) |
0.983451 |
|||