Автор работы: Пользователь скрыл имя, 11 Апреля 2013 в 23:25, реферат
В настоящее время накоплен большой опыт создания автоматических систем управления (АСУ) в различных отраслях народного хозяйства. Этот опыт позволяет сделать вывод о том, что резерв повышения эффективности АСУ заключается в увеличении уровня интеллектуализации этих систем, переходе к так называемым “разумным” производственным системам, ориентированным на знания.
Область применения существующих на сегодняшний день систем искусственного интеллекта (ИИ) охватывает медицинскую диагностику, интерпретацию геологических данных, научные исследования в химии, биологии, военном деле и ряде других отраслей.
Введение 2
1. Новая информационная технология в системах управления производством 3
1.1. Эволюция систем управления производством 3
1.2. ПСИИ – системы, базирующиеся на знаниях 4
2. Представление знаний в ПСИИ 5
3. Архитектура ПСИИ 7
3.1. Структура ПСИИ 7
3.2. База знаний 8
3.3. Механизм вывода 8
4. Проектирование ПСИИ 9
4.1. Этапы проектирования и стадии существования ПСИИ 9
4.2. Предметная область и работа с экспертами 10
5. Инструментальные средства для разработки ПСИИ 11
5.1. Программные средства 11
5.2. Технические средства 12
Заключение 13
Литература 14
Введение
1. Новая информационная
технология в системах
3. Архитектура
ПСИИ
4. Проектирование
ПСИИ
Введение
Область применения существующих на сегодняшний день систем искусственного интеллекта (ИИ) охватывает медицинскую диагностику, интерпретацию геологических данных, научные исследования в химии, биологии, военном деле и ряде других отраслей. Что касается применения таких систем в сфере управления промышленными производствами, то эти вопросы еще не нашли должного отражения в литературе.
Производственные системы с
искусственным интеллектом
Как известно, управление технологическими процессами вплоть до 60-х годов основывалось на применении несложных регуляторов механического, электрического и пневматического типов, расчет которых базировался на линейных одномерных моделях.
Проектирование более сложных систем управления ограничивалось как возможностями технических средств и недостаточной теоретической базой, так и относительной простотой большинства технологических процессов того времени.
Примерно к тому же времени относятся первые попытки применения ЭВМ в планировании и управлении производством. Правда техническая база оставалась еще слабой. ЭВМ первого поколения, на которых базировалась разработка АСУ были мало пригодны для решения задач управления производством. Поэтому ЭВМ применялись в основном для бухгалтерского учета.
Применение ЭВМ второго поколения, а также работы в области методологии проектирования и внедрения АСУ позволили поставить задачу управления предприятием в рамках функциональных подсистем. Опыт эксплуатации АСУП, внедренных в конце
60-х годов, показал их
Высокоэффективные и надежные (для того времени) ЭВМ третьего поколения позволили перейти к более сложным формам организации систем управления тех. объектами. Поддержание процесса вблизи оптимальной рабочей точки обеспечивалось путем оперативного воздействия на него, т.е. значения вычисленных установок преобразуются в настройки регуляторов. Функции оператора-технолога сводятся к наблюдению и вмешательству при аварийных ситуациях. Однако для ряда промышленных объектов реализация данных форм организации систем управления оказалась невозможной. Тогда появились адаптивные самообучающиеся и самообучающиеся системы. Несмотря на то, что в теории обучающихся и самообучающихся автоматических систем были получены важные результаты, промышленное применение их было достаточно ограничено из-за отсутствия доступных инженерных методов синтеза и технической реализации алгоритмов таких систем.
Современные АСУ не могут обходиться без наличия в них специальных средств организации диалога с человеком. Конечные пользователи, осознавая возможности, которые может сегодня предоставить им вычислительная техник, претендуют на непосредственный контакт с ПК или интеллектуальными терминалами. В большинстве внедренных систем управления этот контакт ограничивается простейшими режимами диалога и помогает пользователю выбирать подходящий вычислительный алгоритм, определять и задавать свои предложения относительно вывода решения, представления результатов. Более развитые средства дают возможность организовывать диалог с самой моделью для осуществления ее информационных и структурных модификаций. Именно взаимодействие конечного пользователя с оптимизационными моделями в процессе принятия управленческих решений представляет в настоящее время наибольший интерес и значительные трудности.
Исторически теоретические наработки в области искусственного интеллекта велись в двух основных направлениях
Первое направление связано с попытками разработки интеллектуальных машин путем моделирования их биологического прототипа – человеческого мозга. Оптимизм кибернетиков 50-х годов, возлагавших надежды на данное направление не увенчался успехом ввиду непригодности для этих целей существовавших тогда аппаратных и программных средств.
Второе направление –
Попытки уйти от
Базовая структура “системы, базирующейся на знаниях” состоит из следующих блоков: базы знаний, содержащей знания о некоторой ограниченной предметной области; решателя, или блока логического вывода, осуществляющего активизацию знаний, соответствующих текущей ситуации; блока верификации БЗ, обеспечивающего добавление новых знаний и корректировку уже существующих; блока объяснения, позволяющего пользователю прослеживать всю цепочку рассуждений системы, приводящих к конечному результату, и, наконец, интерфейса, обеспечивающего удобную связь между пользователем и системой.
Главная проблема, стоящая перед предприятием, в смысле управления, - это проблема преодоления сложности при выборе из множества решений. Это может быть инженерный выбор решения, выбор расписания и т.д.
Управление производством
Нехватка времени на принятие решения – еще одна проблема, которая проявляется по мере усложнения производства. Не менее важна и проблема координации. Если проектирование не оптимально по отношению к стадиям производства, складирования, распределения, то это может увеличить цену производства и снизить качество изделий.
И, наконец, очень важный фактор – необходимость сохранения и распределения знаний отдельных опытных экспертов, полученных ими в процессе многолетней работы и большого практического опыта. Проблема извлечения знаний и их распределения – сегодня одна из главных проблем производственных организаций.
Таким образом, необходима автоматизация интеллектуальной деятельности человека в производственных системах управления.
Важное место в теории искусственного интеллекта занимает проблема представления знаний, являющаяся, по мнению многих исследователей, ключевой. Что же представляют собой знания и в чем их отличие от данных?
Знания представляют собой совокупность сведений (у индивидуума, общества или у системы ИИ) о мире ( конкретной предметной области, совокупности объектов или объекта), включающих в себя информацию о свойствах объектов, закономерностях процессов и явлений, правилах использования этой информации для принятия решений.
Первоначально вычислительная техника была ориентирована на обработку данных. Это было связано как с уровнем развития техники и программного обеспечения, так и со спецификой решаемых задач. Дальнейшее усложнение решаемых задач, их интеллектуализация, развитие ВТ ставят задачу создания машин обработки знаний. Существенным отличием знаний от данных является их интерпретируемость.
Если для интерпретации данных необходимы соответствующие программы и сами по себе они не несут содержательной информации, то знания всегда содержательны. Другой отличительной чертой знаний является наличие отношений, например, вида “тип-подтип“, “элемент-множество“ и т.д. Знания характеризуются наличием ситуативных связей, определяющих ситуативную совместимость отдельных событий и фактов, позволяющих устанавливать причинно-следственные связи.
Некоторые исследователи предпринимали попытки определить типы знаний, которые должны быть представлены в системах ИИ. Так, например, этот перечень может охватывать: структуру, форму, свойства, функции и возможные состояния объекта; возможные отношения между объектами, возможные события, в которых эти объекты могут участвовать; физические законы; возможные намерения, цели, планы, соглашения..
Нередко представление знаний провозглашается ядром ИИ, а исследование механизмов представления – определяющей чертой ИИ. Так, Н. Нильсон считает, что “искусственный интеллект – это наука знаний, - как представлять знания, как получать и использовать их“
Можно выделить ряд общих для всех систем представления знаний (СПЗ) черт. А именно:
Все СПЗ имеют дело с двумя мирами – представляемым и представляющим. Вместе они образуют систему для представления. Существует также ряд общих для всех СПЗ проблем. К ним можно отнести, в частности, проблемы: приобретения новых знаний и их взаимодействие с уже существующими, организации ассоциативных связей, неоднозначности и выбора семантических примитивов, явности знаний и доступности, выбора соотношения декларативной и процедуральной составляющих представления, что влияет на экономичность системы, полноту, легкость кодировки и понимания.
Модели представления знаний можно условно разделить на декларативные и процедуральные.
Семантика непосредственно заложена в описание элементов базы знаний, за счет чего повышается эффективность поиска решений. Статическая база знаний мала по сравнению с процедуральной частью. Она содержит так называемые “утверждения“, которые приемлемы в данный момент, но могут быть изменены или удалены в любой момент. Общие знания и правила вывода представлены в виде специальных целенаправленных процедур, активизирующихся по мере надобности.
Процедуры могут активизировать друг друга, их выполнение может прерываться, а затем возобновляться. Возможно использование процедур - “демонов“, активизирующихся при выполнении операций введения, изменения или удаления данных.
Средством повышения эффективности генерации вывода в процедуральных моделях является добавление в систему знаний о применении, т.е. знаний о том, каким образом использовать накопленные знания для решения конкретной задачи. Эти знания, как правило, тоже представляются в процедуральной форме.
Главное преимущество процедуральных моделей представления знаний заключается в большей эффективности механизмов вывода за счет введения дополнительных знаний о применении, что, однако снижает их общность. Другое важное преимущество заключено в выразительной силе. Эти системы способны смоделировать практически любую модель представления знаний. Выразительная сила процедуральных систем проявляется в расширенной системе выводов, реализуемых в них.
Информация о работе Производственные системы с искусственным интеллектом