Автор работы: Пользователь скрыл имя, 02 Июля 2014 в 16:35, лекция
Если между экономическими явлениями существуют нелинейные соотношения, то они выражаются с помощью соответствующих нелинейных функций.
Различают два класса нелинейных регрессий:
1. Регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, например
– полиномы различных степеней – , ;
– равносторонняя гипербола – ;
– полулогарифмическая функция – .
2. Регрессии, нелинейные по оцениваемым параметрам, например
– степенная – ;
– показательная – ;
– экспоненциальная – .
=4.3/5=0.86
( -y)=0.86-4.8=3.94
Вычисляем индекс корреляции по формуле
= =0,981
Индекс корреляции близок к единице, поэтому можно сделать вывод о довольно тесной связи между заданными величинами.
Пример для практической работы
По данным проведенного опроса восьми групп семей известны данные связи расходов населения на продукты питания с уровнем доходов семьи.
Таблица 1.2
Расходы на продукты питания, , тыс. руб. |
0,9 |
1,2 |
1,8 |
2,2 |
2,6 |
2,9 |
3,3 |
3,8 |
Доходы семьи, |
1,2 |
3,1 |
5,3 |
7,4 |
9,6 |
11,8 |
14,5 |
18,7 |
Предположим, что связь между признаками носит нелинейный характер, и найдем параметры следующих нелинейных уравнений: , и .
Для нахождения параметров регрессии делаем замену и составляем вспомогательную таблицу ( ).
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
1 |
1,2 |
0,182 |
0,9 |
0,164 |
0,033 |
0,81 |
0,499 |
0,401 |
0,1610 |
44,58 |
2 |
3,1 |
1,131 |
1,2 |
1,358 |
1,280 |
1,44 |
1,508 |
-0,308 |
0,0947 |
25,64 |
3 |
5,3 |
1,668 |
1,8 |
3,002 |
2,781 |
3,24 |
2,078 |
-0,278 |
0,0772 |
15,43 |
4 |
7,4 |
2,001 |
2,2 |
4,403 |
4,006 |
4,84 |
2,433 |
-0,233 |
0,0541 |
10,57 |
5 |
9,6 |
2,262 |
2,6 |
5,881 |
5,116 |
6,76 |
2,709 |
-0,109 |
0,0119 |
4,20 |
6 |
11,8 |
2,468 |
2,9 |
7,157 |
6,092 |
8,41 |
2,929 |
-0,029 |
0,0008 |
0,99 |
7 |
14,5 |
2,674 |
3,3 |
8,825 |
7,151 |
10,89 |
3,148 |
0,152 |
0,0232 |
4,62 |
8 |
18,7 |
2,929 |
3,8 |
11,128 |
8,576 |
14,44 |
3,418 |
0,382 |
0,1459 |
10,05 |
Итого |
71,6 |
15,315 |
18,7 |
41,918 |
35,035 |
50,83 |
18,720 |
-0,020 |
0,5688 |
116,08 |
Среднее значение |
8,95 |
1,914 |
2,34 |
5,240 |
4,379 |
6,35 |
– |
– |
0,0711 |
14,51 |
– |
0,846 |
0,935 |
– |
– |
– |
– |
– |
– |
– | |
– |
0,716 |
0,874 |
– |
– |
– |
– |
– |
– |
– |
Найдем уравнение регрессии:
,
.
Т.е. получаем следующее уравнение регрессии: . Теперь заполняем столбцы 8-11 нашей таблицы.
Индекс корреляции находим по формуле:
,
а индекс детерминации , который показывает, что 91,8% вариации результативного признака объясняется вариацией признака-фактора, а 8,2% приходится на долю прочих факторов.
Средняя ошибка аппроксимации: , что недопустимо велико.
-критерий Фишера:
,
значительно превышает табличное .
Изобразим на графике исходные данные и линию регрессии:
Рис. 1.6.
Для нахождения параметров регрессии делаем замену и составляем вспомогательную таблицу ( ).
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
1 |
1,2 |
1,10 |
0,9 |
0,99 |
1,2 |
0,81 |
0,734 |
0,166 |
0,0276 |
18,46 |
2 |
3,1 |
1,76 |
1,2 |
2,11 |
3,1 |
1,44 |
1,353 |
-0,153 |
0,0235 |
12,77 |
3 |
5,3 |
2,30 |
1,8 |
4,14 |
5,3 |
3,24 |
1,857 |
-0,057 |
0,0033 |
3,19 |
4 |
7,4 |
2,72 |
2,2 |
5,98 |
7,4 |
4,84 |
2,247 |
-0,047 |
0,0022 |
2,12 |
5 |
9,6 |
3,10 |
2,6 |
8,06 |
9,6 |
6,76 |
2,599 |
0,001 |
0,0000 |
0,05 |
6 |
11,8 |
3,44 |
2,9 |
9,96 |
11,8 |
8,41 |
2,912 |
-0,012 |
0,0001 |
0,42 |
7 |
14,5 |
3,81 |
3,3 |
12,57 |
14,5 |
10,89 |
3,259 |
0,041 |
0,0017 |
1,20 |
8 |
18,7 |
4,32 |
3,8 |
16,43 |
18,7 |
14,44 |
3,740 |
0,060 |
0,0036 |
1,58 |
Итого |
71,6 |
22,54 |
18,7 |
60,24 |
71,6 |
50,83 |
18,700 |
-0,001 |
0,0619 |
39,82 |
Среднее значение |
8,95 |
2,82 |
2,34 |
7,53 |
8,95 |
6,35 |
– |
– |
0,0077 |
4,98 |
– |
1,00 |
0,935 |
– |
– |
– |
– |
– |
– |
– | |
– |
1,00 |
0,874 |
– |
– |
– |
– |
– |
– |
– |
Найдем уравнение регрессии:
,
.
Т.е. получаем следующее уравнение регрессии: . Теперь заполняем столбцы 8-11 нашей таблицы.
Индекс корреляции находим по формуле (1.21):
,
а индекс детерминации , который показывает, что 99,1% вариации результативного признака объясняется вариацией признака-фактора, а 0,9% приходится на долю прочих факторов.
Средняя ошибка аппроксимации: показывает, что линия регрессии хорошо приближает исходные данные.
-критерий Фишера:
,
значительно превышает табличное .
Изобразим на графике исходные данные и линию регрессии:
Рис. 1.7
Для нахождения параметров регрессии необходимо провести ее линеаризацию, как было показано выше:
,
где .
Составляем вспомогательную таблицу для преобразованных данных:
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
1 |
0,182 |
-0,105 |
-0,019 |
0,033 |
0,011 |
0,8149 |
0,0851 |
0,0072 |
9,46 |
2 |
1,131 |
0,182 |
0,206 |
1,280 |
0,033 |
1,3747 |
-0,1747 |
0,0305 |
14,56 |
3 |
1,668 |
0,588 |
0,980 |
2,781 |
0,345 |
1,8473 |
-0,0473 |
0,0022 |
2,63 |
4 |
2,001 |
0,788 |
1,578 |
4,006 |
0,622 |
2,2203 |
-0,0203 |
0,0004 |
0,92 |
5 |
2,262 |
0,956 |
2,161 |
5,116 |
0,913 |
2,5627 |
0,0373 |
0,0014 |
1,43 |
6 |
2,468 |
1,065 |
2,628 |
6,092 |
1,134 |
2,8713 |
0,0287 |
0,0008 |
0,99 |
7 |
2,674 |
1,194 |
3,193 |
7,151 |
1,425 |
3,2165 |
0,0835 |
0,0070 |
2,53 |
8 |
2,929 |
1,335 |
3,910 |
8,576 |
1,782 |
3,7004 |
0,0996 |
0,0099 |
2,62 |
Итого |
15,315 |
6,002 |
14,637 |
35,035 |
6,266 |
18,608 |
0,0919 |
0,0595 |
35,14 |
Среднее значение |
1,914 |
0,750 |
1,830 |
4,379 |
0,783 |
– |
– |
0,0074 |
4,39 |
0,846 |
0,470 |
– |
– |
– |
– |
– |
– |
– | |
0,716 |
0,221 |
– |
– |
– |
– |
– |
– |
– |
Найдем уравнение регрессии:
,
.
Т.е. получаем следующее уравнение регрессии: . После потенцирования находим искомое уравнение регрессии:
.
Теперь заполняем столбцы 7-10 нашей таблицы.
Индекс корреляции находим по формуле (1.21):
,
а индекс детерминации , который показывает, что 96,7% вариации результативного признака объясняется вариацией признака-фактора, а 3,3% приходится на долю прочих факторов.
Средняя ошибка аппроксимации: показывает, что линия регрессии хорошо приближает исходные данные.
-критерий Фишера:
,
значительно превышает табличное .
Изобразим на графике исходные данные и линию регрессии:
Рис. 1.8.
Сравним построенные модели по индексу детерминации и средней ошибке аппроксимации:
Таблица 1.8
Модель |
Индекс детерминации, |
Средняя ошибка аппроксимации, |
Линейная модель, |
0,987 |
6,52 |
Полулогарифмическая модель, |
0,918 |
14,51 |
Модель с квадратным корнем, |
0,991 |
4,98 |
Степенная модель, |
0,967 |
4,39 |
Наиболее хорошо исходные данные аппроксимирует модель с квадратным корнем. Но в данном случае, так как индексы детерминации линейной модели и модели с квадратным корнем отличаются всего на 0,004, то вполне можно обойтись более простой линейной функцией.
Информация о работе Нелинейные модели парной регрессии и корреляции