Условия и проблемы выбора в экономике. Производственная функция

Автор работы: Пользователь скрыл имя, 06 Ноября 2013 в 18:03, контрольная работа

Описание работы

Соединение ресурсов, осуществляемое в рамках определенных производственных отношений, называется способом производства. Ограниченность ресурсов не позволяет иметь все, что хотелось бы человеку. Оказывается, наши потребности превышают наши возможности, так как все имеющиеся ресурсы в каждой стране, да и в целом мире, ограничены. Вот почему всеобщее изобилие — это миф. Конечно, отдельные люди могут жить как при «коммунизме», но только отдельные, а не все вместе. Это неоспоримый факт, и он доказан историей всего человечества.

Содержание работы

Введение…………………………………………………………………………….. 3

Условия и проблемы выбора в экономике……………………………………….. 4-12

Производственная функция……………………………………………………….. 13-16

Заключение…………………………………………………………………………. 17

Список используемой литературы………………………………………………… 18

Файлы: 1 файл

к.р по экономике.doc

— 211.00 Кб (Скачать файл)

эффективным по сравнению  со способом В, если он предполагает использование

хотя бы одного ресурса  в меньшем, а всех остальных не в большем количестве, чем способ В. Последний считается технически неэффективным по сравнению со способом А. Технически неэффективные способы  не используются рациональным предпринимателем.

  Если же способ А предполагает использование одних ресурсов в большем, а других в меньшем количестве, чем способ В, эти способы несравнимы по их технической эффективности. В этом случае оба способа рассматриваются как технически эффективные и включаются в производственную функцию. Какой из них будет выбран и реализован в действительности, зависит от соотношения цен соответствующих ресурсов. Этот выбор основывается на критериях экономической эффективности, связанные с этим вопросы мы рассмотрим в конце главы. Здесь же важно под. черкнуть, что между понятиями технической и экономической эффективности существует принципиальное различие. Заметим также, что изменение соотношения цен ресурсов может сделать ранее выбранный технически и экономически эффективный метод экономически неэффективным, и наоборот.

  В теории производства традиционно используется двухфакторная производственная функция вида:

 

характеризующая зависимость  между максимально возможным  объемом выпуска (Q) и количествами применяемых ресурсов труда (L) и капитала (К). Это объясняется не только удобством графического отображения, но и тем, что удельный расход материалов во многих случаях слабо зависит от объема выпуска, а такой фактор, как производственные площади, обычно рассматривается вместе с капиталом. При этом ресурсы L и К, а также выпуск Q рассматриваются в мере потока, т.е. в единицах использования (выпуска) в единицу времени.

  Графически каждый способ производства может быть представлен точкой, координаты которой характеризуют минимально необходимые для производства данного объема выпуска количества ресурсов L и К, а производственная функция — линией равного выпуска, или изоквантой, подобно тому как в теории потребления кривая безразличия характеризует один и тот же уровень удовлетворения, или полезности различных комбинаций потребительских благ.

   Таким образом, на карте выпуска каждая изокванта представляет множество

13

 минимально необходимых  комбинаций производственных ресурсов  или технически эффективных способов производства определенного объема продукции. Чем дальше от начала координат расположена изокванта, тем больший объем выпуска она представляет. При этом в отличие от кривых безразличия каждая изокванта характеризует количественно определенный объем выпуска. Так, на рис. 2 приведены три изокванты, соответствующие выпуску 100, 200 и 300 единиц продукции, так что мы можем сказать, что для выпуска 200 единиц продукции нам необходимо либо К единиц капитала и L единиц труда, либо К2 единиц капитала и L2 единиц труда, либо

 

какая-то другая их комбинация из множества, представленного изоквантой Qi = 200.

  Наклон изоквант характеризует предельную норму технического замещения (МRTS; marginal rate of technical substitution — англ.) одного ресурса другим точно так же, как наклон кривой безразличия характеризует предельную норму замены одного блага другим (MRS).

  Изокванты (как и кривые безразличия) могут иметь различную конфигурацию.     Линейная изокванта (рис 3,а) предполагает совершенную замещаемоеть производственных ресурсов, так что данный выпуск может быть получен с помощью либо только труда, либо только капитала, либо с использованием различных комбинаций того и другого ресурса при постоянной норме их замещения. Изокванта, представленная на рис. 3,6, характерна для случая жесткой дополняемости ресурсов.

14

Известен лишь один метод  производства данного продукта: труд и капитал комбинируются в  единственно возможном соотношении, предельная норма замещения равна  нулю. Такую изокванту

иногда называют изоквантой леонтьевского типа, по имени американского

экономиста русского происхождения В.В. Леонтьева, который  положил такой тип 

изокванты в основу разработанного им метода затраты—выпуск, принесшего ему Нобелевскую премию по экономике.

   На рис. 3,в, показана ломаная изокванта, предполагающая наличие лишь нескольких методов производства (Р). При этом предельная норма технического замещения при движении вдоль такой изокванты сверху вниз направо убывает. Изокванта подобной конфигурации используется в линейном программировании — методе экономического анализа, разработанном двумя другими нобелевскими лауреатами — Т. Купмансом (1910-1985) и Л.В.Канторовичем (1912-1986).

 

Наконец, на рис. 3,г представлена изокванта, предполагающая возможность непрерывной, но не совершенной замещаемости ресурсов в определенных границах, за пределами которых замещение одного фактора другим технически невозможно (или неэффективно).

  Многие специалисты, особенно инженеры, предприниматели, вообще те, кого у нас принято называть производственниками, считают ломаную изокванту наиболее реалистично представляющей производственные возможности большинства современных производств. Однако традиционная экономическая теория обычно оперирует гладкими изоквантами, подобными изображенной на рис. 3,г, поскольку их анализ не требует применения сложных математических методов. Кроме того, изокванты такого вида можно рассматривать как некую приближенную

15

 аппроксимацию ломаной  изокванты. Увеличивая число методов  производства и, следовательно,  множество точек излома, мы можем (в пределе) представить ломаную изокванту в виде гладкой кривой.

  Особенности анализа ломаной изокванты будут рассмотрены ниже. Пока же мы ограничимся анализом лишь гладких изоквант типа представленной на рис. 3,г.

Конфигурация такой изокванты предполагает неограниченную делимость продукции и применяемых ресурсов и убывающую предельную норму технического замещения. Соответственно отображаемая ею производственная функция вида (2) предполагается непрерывной и дважды дифференцируемой.

  Предельная норма технического замещения имеет, однако, тот недостаток, что она зависит от единиц, в которых измеряются объемы применяемых ресурсов. Этого недостатка нет у показателя эластичности замещения. Он показывает, на сколько процентов должно измениться отношение между количествами ресурсов, чтобы предельная норма замещения изменилась на 1 %. Эластичность замещения (<г) определяется как процентное изменение в предельной норме технического замещения:

  Показатель эластичности замещения не зависит от единиц, в которых измеряются L и К, поскольку и числитель, и знаменатель правой части (4) представлены относительными величинами. 

  Еще одна характеристика производственной функции — интенсивность применения различных ресурсов в определенном производственном процессе.   Она

определяется наклоном луча,

 

проведенного из начала координат до интересующей нас точки  на изокванте. Так, на рис. 4 производственный способ Р более капиталоинтенсивен, чем способ Р2. Очевидно, что здесь

 

 

Верхняя часть изокванты включает капиталоинтенсивные, тогда как нижняя — трудоинтенсивные производственные методы.

16

Заключение

 

 

Для того, чтобы осуществить  свой выбор в мире ограниченных ресурсов, хозяйственные субъекты должны располагать  необходимой информацией о том, что, как и для кого производить. Эти три вопроса формируют три основных задачи, которые должны решаться в любом обществе.

  Что производить – это принятие решений о том, какие именно блага, какого качества, в каком количестве должны быть произведены.

  Как производить – это принятие решений о том с помощью каких ограниченных ресурсов и их комбинаций, с помощью каких технологий будут произведены блага.

  Для кого производить – это проблема, связанная с распределением благ: кому достанутся производственные блага и в каком количестве будет располагать ими экономический субъект.

  Чтобы ответить на эти вопросы, производство должно быть определенным образом организовано, т. е. все действия участников производства должны быть подчинены определенной цели и для этого все их действия упорядочены.

  Люди всегда будут стараться использовать свой капитал так, чтобы получить от него как можно больше прибыли, и весь интерес в том, что путей увеличения этой самой прибыли, как было упомянуто выше, достаточно много. Экономика может помочь определиться с выбором, и данная наука очень важна, особенно в наше время. Человечество должно больше обращать внимание на экономику, чтобы не допускать ошибок и чаще делать правильный выбор.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17

Список используемой литературы

 

1. Камаева В.Д. Экономическая теория. 2004. – 356 с.

 

2. Курс экономической теории / отв. ред. проф. Чепурин М.Н., и проф. Киселева Е.А.: – 5-е исправленное, дополненное и переработанное издание – Киров: «АСА», 2005г. – 832 с.

 

3. Курс экономической теории: Общие основы экономической теории:: Микроэкономика. Учебное пособие/ Под ред. А.В. Сидоровича; МГУ им. МВ. Ломоносова. – 2-е изд., перераб. И доп. – М.: Издательство «Дело и Сервис», 2001. – 832 с.

 

4. Носова С.С. Экономическая теория. Учебник./ С.С. Носова. – М.: ИТК «Дашков и К0», 2003- 864 с.

 

5. Сажина М.А. Экономическая теория. Учебник для вузов. Сажина М.А., Г.Г.Чибриков.– М.: Издательство НОРМА (Издательская группа НОРМА – ИНФРА– М), 2001. – 456 с.

 

6. Экономическая теория: Учебник для вузов/ Под ред. В.Д. Камаева. – М.: ВЛАДОС. 2000. – 640 с.

 

7. Материал из интернета

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18


Информация о работе Условия и проблемы выбора в экономике. Производственная функция