Автор работы: Пользователь скрыл имя, 10 Октября 2013 в 23:26, курсовая работа
Целью дипломной работы являются обобщение и анализ моделей оценки инвестиционных рисков, изучение теоретической концепции и методологии управления рисков для использования в банковской практике.
Для реализации поставленной цели в дипломной работе будут решены следующие задачи:
изучение основных видов инвестиционных рисков и их классификации в инвестиционном анализе;
анализ классических методов оценки риска;
исследование VaR моделей в оценке инвестиционных рисков,
разработка методологии управления рисками финансовых активов для применения в российской банковской практике;
рассмотрение метода по страхованию рисков с помощью хеджирования позиций.
Общепринятым модельным допущением к процессу ценового поведения акций является то, что процесс изменения котировки является винеровским случайным процессом, и формула Блэка-Шоулза тоже берет это предположение за исходное. Существуют определенные ограничения на использование вероятностей в экономической статистике. Но, поскольку этот инструмент учета неопределенности является традиционным и общеупотребительным, я хочу оформить свои результаты в вероятностной постановке, при простейших модельных допущениях с использованием аппарата статистических вероятностей. А затем, по мере накопления опыта моделирования, мы будем усложнять модельные допущения и одновременно переходить от статистических вероятностей к вероятностным распределениям с нечеткими параметрами, используя при этом результаты теории нечетких множеств. Задача эта в целом выходит за рамки данной монографии, но заложить основы этой теории мы сможем уже здесь.
Посмотрим на винеровский ценовой процесс c постоянными параметрами m (коэффициент сноса, по смыслу – предельная курсовая доходность) и s (коэффикциент диффузии, по смыслу – стандартное уклонение от среднего значения предельной доходности). Аналитическое описание винеровского процесса:
(3.48)
где z(t) – стандартный винеровский процесс (броуновское движение, случайное блуждание) с коэффициентом сноса, равным нулю и коэффициентом диффузии, равным единице.
Если принять, что начальное состояние процесса известно и равно S0, то мы можем, исходя из (2.1), построить вероятностное распределение цены ST в момент T. Эта величина, согласно свойств винеровского процесса как процесса с независимыми приращениями, имеет нормальное распределение со следующими параметрами:
; (3.49)
(3.50)
В принципе, для моих последующих построений вид вероятностного распределения цены подлежащего актива несущественен. Но здесь и далее, для определенности, мы остановимся на нормальном распределении. Его плотность обозначим как
(3.51)
Примерный вид плотности нормального распределения вида (3.51) представлен на рис. 3.2.2.
Рис. 3.2.2. Примерный вид плотности нормального распределения
Теперь, сделав все базовые допущения к математической модели, мы можем переходить непосредственно к процессу вероятностного моделирования опционов и их комбинаций.
Приобретая опцион call, инвестор рассчитывает получить премию как разницу между финальной ценой подлежащего актива ST и ценой исполнения опциона xc. Если эта разница перекрывает цену приобретения опциона zc, то владелец опциона получает прибыль. В противном случае имеют место убытки.
Случайная величина дохода по опциону связана со случайной величиной финальной цены подлежащего актива соотношением 3.49.
(3.52)
В правой части (3.52) все параметры являются известными и постоянными величинами, за исключением ST, которая является случайной величиной с плотностью распределения (3.51).
А текущую доходность по опциону call мы определим формулой
(3.53)
Представление (3.49), когда стартовая и финальная цены актива связаны экспоненциальным множителем, является неудобным для моделирования. Аналогичные неудобства вызывает представление доходности на основе степенной зависимости. Именно поэтому мы оперируем категорией текущей доходности как линейной функции дохода и финальной цены. Предполагая нормальность распределения финальной цены актива (что соответствует винеровскому описанию ценового процесса), мы автоматически таким образом приходим к нормальному распределению текущей доходности. Построенная линейная связь текущей доходности и цены является полезной особенностью, которая потом может быть удачно использована в ходе вероятностного моделирования.
Определим плотность jI(y) распределения дохода IT по опциону как функции случайной величины ST. Воспользуемся известной формулой. Если исходная случайная величина X имеет плотность распределения jX(x), а случайная величина Y связана с X функционально как Y=Y(X), и при этом существует обратная функция X=X(Y), тогда плотность распределения случайной величины Y имеет вид
. (3.54)
В нашем случае, исходя из (3.52),
(3.55)
dST/dIT = 1, IT > -zc. (3.56)
Мы видим, что в точке IT = -zc плотность jI(y) приобретает вид дельта-функции. Необходимо определить множитель при дельта-функции. Это можно сделать косвенным образом. На участке, где функция ST(IT) дифференцируема, в силу (3.54)-( 3.58) выполняется
IT > -zc. (3.57)
В силу нормирующего условия справедливо
(3.58)
откуда, в силу (2.10), искомый множитель K есть
(3.59)
Множитель K есть, таким образом, не что иное как вероятность события ST < xc. При наступлении такого события говорят, что опцион call оказался не в деньгах. Это событие – условие отказа от исполнения call-опциона и прямые убытки в форме затрат на приобретение опциона.
Наконец, итоговое выражение для jI(y)
(3.60)
где
(3.61)
На рис. 3.2.2 представлен примерный вид плотности вида (3.60).
Рис. 3.2.2. Примерный вид плотности усеченного распределения
Видно, что мы перешли от нормального распределения цен к усеченному нормальному распределению доходов. Но это не классическое усеченное распределение, а распределение, функция которого претерпевает разрыв первого рода в точке с бесконечной плотностью.
Теперь нетрудно перейти к распределению доходности jR(v), пользуясь (3.53), (3.54) и (3.60):
(3.62)
Плотности вида (3.60) и (3.62) – бимодальные функции.
Теперь оценим риск инвестиций в call опцион. Мне думается, что правильное понимание риска инвестиций сопряжено с категорией неприемлемой доходности, когда она по результатам финальной оценки оказывается ниже предельного значения, например, уровня инфляции в 4% годовых. Это значение близко к текущей доходности государственных облигаций, и тогда ясно, что обладая сопоставимой с облигациями доходностью, опционный инструмент значительно опережает последние по уровню риска прямых убытков (отрицательной доходности).
Поэтому риск инвестиций в опцион call может быть определен как вероятность неприемлемой доходности по формуле
(3.63)
где jR(v) определяется по (3.62).
Среднеожидаемая доходность вложений в опцион определяется стандартно, как первый начальный момент распределения:
(3.64)
Среднеквадратическое
(3.65)
Рассмотрим важные асимптотические следствия полученных вероятностных форм. Для этого установим связь между доходностями call опциона и подлежащего актива, с учетом (3.52) и (3.53):
, (3.66)
где
(3.67)
Видим, что доходность опциона call и подлежащего актива связаны кусочно-линейным соотношением, причем на участке прямой пропорциональности это происходит с коэффициентом g, который собственно, и характеризует фактор финансового рычага (левериджа). Участок прямой пропорциональности соответствует той ситуации, когда опцион оказывается в деньгах. Поэтому, с приближением вероятности K вида (3.49) к нулю, выполняются следующие соотношения
(3.68)
То есть между соответствующими параметрами подлежащего актива на участке, когда опцион оказывается в деньгах, возникает линейная связь посредством левериджа. С ростом среднеожидаемой доходности актива растет и средняя доходность call опциона, а с ростом волатильности актива растет также и волатильность опциона.
Итак, мы получили вероятностные формы для описания доходности и риска по вложениям в опцион call. Действуя аналогичным образом, мы можем получать подобные формы для опционов другой природы, а также для их комбинаций друг с другом и с подлежащими активами.
Приобретая опцион put,
инвестор рассчитывает получить премию
как разницу между ценой
Надо сказать, что приобретение опциона put без покрытия подлежащим активом не является традиционной стратегий. Классический инвестор все же психологически ориентируется на курсовой рост приобретаемых активов. С этой точки зрения стратегия классического инвестора – это стратегия «быка». А покупка put опциона без покрытия – эта «медвежья» игра.
Обычная логика использования опциона put – это логика отсечения убытков с фиксацией нижнего предела доходности, который не зависит от того, насколько глубоко провалился по цене подлежащий актив. Но для нас не имеет значения, какой стратегии придерживается инвестор. Мы понимаем, что опцион put является потенциальным средством извлечения доходов, и нам эту доходность хотелось бы вероятностно описать.
Проведем рассуждения по аналогии с предыдущим разделом работы. Случайная величина дохода по опциону связана со случайной величиной финальной цены подлежащего актива соотношением.
(3.69)
А текущая доходность по опциону put определяется формулой
(3.70)
Используем все соображения о получении плотностей распределения, выработанные в предыдущем разделе работы. В нашем случае, исходя из (3.69)
(3.71)
|dST/dIT| = 1, IT > -zp. (3.72)
Интересно отметить, что в случае опциона call цена подлежащего актива и доход по опциону связаны возрастающей зависимостью, а в нашем случае - убывающей. То есть чем хуже чувствует себя актив, тем лучше держателю непокрытого опциона (если, конечно, инвестор заодно не владеет и самим подлежащим активом).
Множитель K при дельта-функции в точке IT = -zp есть
- (3.73)
вероятность события ST > xp. Опцион оказывается не в деньгах, что есть условие отказа от исполнения put опциона и прямые убытки в форме затрат на приобретение этого опциона.
Итоговое выражение для плотности распределения jI(y) случайной величины дохода по опциону put имеет вид
(3.74)
Плотность вида (2.27) – это усеченный с двух сторон нормальный закон плюс дельта-функция на границе усечения. С этой точки зрения качественный вид зависимости (2.27) повторяет вид того же для опциона call в силу симметрии нормального распределения. При произвольном распределении финальной цены результаты были бы другими.
Теперь нетрудно перейти к распределению доходности jR(v), пользуясь (3.69), (3.70) и (3.71):
(3.75)
Разумеется, отмечаем бимодальность (3.74) и (3.75).
Поэтому риск инвестиций в опцион put может быть определен по формуле
(3.76)
где
(3.77)
а jR(v) определяется по (3.75).
Среднеожидаемая доходность вложений в опцион и СКО определяются по (2.64) и (2.65) соответственно.
Рассмотрим асимптотические следствия
по аналогии с call опционом. Для этого
установим связь между
, (3.78)
где
(3.79)
Видим, что доходность опциона put и подлежащего актива связаны кусочно-линейным соотношением, причем на участке прямой пропорциональности это происходит с коэффициентом g, который собственно, и характеризует фактор финансового рычага (левериджа).Участок прямой пропорциональности соответствует той ситуации, когда опцион оказывается в деньгах. Поэтому, с приближением вероятности K вида (7.26) к нулю, выполняются следующие соотношения
(3.80)
То есть между соответствующими параметрами подлежащего актива на участке, когда опцион оказывается в деньгах, возникает линейная связь посредством левериджа. С ростом средней доходности актива средняя доходность put опциона падает, а с ростом волатильности актива волатильность опциона также растет.
В начале года инвестор приобретает за zc = 10 ед. цены опцион call на подлежащий актив со стартовой ценой S0 = 100 ед. Цена исполнения опциона xc = 100 ед., опцион американский, срочностью 1 год. Поскольку цена исполнения совпадает со стартовой ценой, то покупаемый опцион является опционом в деньгах. Инвестор ориентируется на следующие параметры доходности и риска подлежащего актива: текущая доходность r = 30% годовых, СКО случайной величины текущей доходности sr = 20% годовых. В пересчете на финальную цену ST это означает, что через время Т = 0.5 лет подлежащий актив будет иметь нормальное распределение ST с параметрами sT = 115 ед. и sS = 10 ед. Требуется определить доходность и риск опциона в момент времени Т = 0.5 года.