Понятие Эконометрики.Математико-статистическая методология эконометрических исследований эконометрики

Автор работы: Пользователь скрыл имя, 20 Мая 2013 в 21:36, контрольная работа

Описание работы

Современная экономическая теория, как на микро, так и на макро уровне, постоянно усложняющиеся экономические процессы привели к необходимости создания и совершенствования особых методов изучения и анализа. При этом широкое распространение получило использование моделирования и количественного анализа. На базе последних выделилось и сформировалось одно из направлений экономических исследований – эконометрика.
Эконометрика – это наука, которая дает количественное выражение взаимосвязей экономических явлений и процессов. Эта наука возникла в результате взаимодействия и объединения трех компонент: экономической теории, статистических и экономических методов. Задачей данной работы является рассмотрение эконометрики как науки в целом, то есть рассмотрение ее объекта, принципов, целей и задач в частности.

Файлы: 1 файл

Документ Microsoft Office Word (4).docx

— 60.80 Кб (Скачать файл)

Поэтому в эконометрике часто  применяются детерминированные методы анализа данных, в отличие от, например, технических наук, в которых обычным является использование вероятностных моделей. Неопределенность приходится описывать не в терминах вероятностно-статистических моделей, а иными способами, например, в терминах теории нечеткости (fuzzy sets theory) или математики и статистики интервальных данных.

Есть два принципиально  различных подхода к изучению поведения организаций и людей. Согласно первому из них, вполне допустимо  описывать действия человека в вероятностных  терминах, например, считать его  ответ на заданный вопрос случайной  величиной. Сторонники второго подхода  полагают, что поведение человека или организации является детерминированным, определяется теми или иными причинами, а случайность при анализе  выборки возникает лишь из-за случайности  при отборе лиц для опроса или  предприятий для изучения. Если ответ  на вопрос имеет вид «да» — «нет», то число ответов «да» при первом подходе, как известно, имеет биномиальное распределение, а при втором —  гипергеометрическое. К счастью  для эконометриков, при увеличении объема генеральной совокупности эти два распределения сближаются (если доля выборки в генеральной совокупности мала, например, меньше 10 %, то вместо гипергеометрического распределения можно использовать биномиальное), так что при обоих подходах можно применять одни и те же эконометрические методы, не тратя сил на решение философского вопроса о детерминированности или случайности поведения экономического агента- человека или организации.

Итак, специфика эконометрики проявляется не в перечне применяемых  для анализа конкретных экономических данных статистических методов, а в частоте использования тех или иных методов.

 

Нечисловые экономические величины 

В теоретических и практических задачах экономики и менеджмента постоянно используются различные величины, обычно рассматриваемые как числовые. Например, рыночная цена товара, прибыль предприятия,индекс инфляции, валовой внутренний продукт, чистая приведенная величина для потока платежей и т. д. При более тщательном анализе оказывается, что подобные величины не имеют определенного численного значения, они размыты, имеют нечисловой характер, и описывать их следует с помощью нечисловых математических понятий, относящихся к тем или иным классам объектов нечисловой природы, таким, какнечеткие множества, интервалы, распределения вероятностейидр. Действительно, можно ли считать, что существует рыночная цена на некоторый товар, выраженная числом? Рассмотрим всем привычный товар —хлеб. Для определенности рассмотрим стандартный батон белого хлеба, который стоил 25 копеек в 1990 г. В настоящее время (июнь 2001 г.) в различных торговых точках Москвы его можно купить по ценам от 6 руб. 50 коп. до 7 руб. 30 коп. Сотрудники Института высоких статистических технологий и эконометрики в течение нескольких лет собирала информацию о ценах на 35 продовольственных товаров в 11 «точках» Москвы и Подмосковья (итоги подведены в статье [9]), и максимальная из отмеченных цен превышала минимальную, как правило, на 30-50 %. Можно говорить о цене товара при конкретном акте купли-продажи, при покупке в конкретном магазине, но нельзя говорить о конкретном числовом значении рыночной цены товара. Так, говорить о «рыночной цене» конкретной квартиры (не в новостройке) бессмысленно. Цена выявится только в результате соглашения продавца и покупателе при совершении акте купли-продажи. С другой стороны, полностью отказываться от этого укоренившегося в литературе понятия нецелесообразно. Мы предлагаем принять, что рыночная цена — объект нечисловой природы, и описывать ее для стандартного батона белого хлеба, например, в виде интервала [6,50; 7,30] руб.

Анализируя реальные данные, убеждаемся, что интервальный характер имеют рыночные цены на двигатели, черный и цветной металл, сплавы, электроэнергию, нефть, бензин, автоприборы и автомобили, трактора, различные виды приводной техники и другие промышленные товары, точно так же как и на разнообразныеуслуги. Цены зависят от конкретного договора между поставщиком и потребителем. Часто появляется дополнительный мешающий фактор — инфляция. Так, с сентября 1995 г. по январь 1996 г. доллар СШАподешевел в нашей стране почти в 2 раза (если сравнивать по покупательной способности в области продовольственных товаров).

Нечисловой характер имеют  не только цены. При обсуждении понятия  «прибыль предприятия» начнем с очевидной бессмысленности выражения «максимизация прибыли» без указания интервала времени, за который прибыль максимизируется. Только задав интервал времени, можно принять оптимальные решения и рассчитать ожидаемую прибыль. Ясно, что оптимальные решения зависят от интервала планирования. Известная в экономической теории проблема «горизонта планирования» состоит в том, что оптимальное поведение зависит от того, на какое время вперед планируют, а выбор этого горизонта не имеет рационального обоснования. В монографии рассмотрен ряд примеров указанной зависимости и предложено использовать асимптотически оптимальные планы. Дополнительная сложность состоит в том, что будущая прибыль не может быть определена точно, а потому сама должна описываться как объект нечисловой природы. Итак, задача «максимизации прибыли» может приобрести точный смысл, например, лишь как максимизация нечеткой прибыли на нечетком интервале времени. Оптимизация в случае нечетких переменных рассматривалась в литературе (см., например, однако пока не получила широкого практического внедрения.

Для приведения экономических  величин к одному моменту времени (к сопоставимым ценам) используютсяиндексы инфляции, в другой терминологии, дефляторы. Рассчитывают их с помощью тех или иных потребительских корзин. При этом на нечеткость «рыночных цен» товаров накладывается произвол в выборе состава потребительской корзины и объемов потребления. Теоретический анализ этой ситуации привел нобелевского лауреата по экономике В. В. Леонтьева к выводу о принципиальной невозможности сравнения экономических величин, относящихся к различным моментам времени [11]. Возможный выход состоит в задании индекса инфляции в интервальном виде. Так, расчеты по собранным Институтом высоких статистических технологий и эконометрики данным о ценах показывают, что для Москвы индекс инфляции с марта 1991 г. по апрель 1999 г. описывается интервалом [21,5; 24,0] (при использовании деноминированных рублей).

Еще более размыты обобщенные макроэкономические показатели типа «валового внутреннего продукта» (ВВП), особенно при их сравнении по годам и странам. По мнению известного экономиста О.Моргенштерна[12] подобные макроэкономические показатели могут быть определены лишь с точностью 5-10 %. Однако, если пользоваться одной и той же методикой расчета, то можно заметить и изменения в 0,1 %. Проблема в том, что сама методика может вызывать сомнения. Например, по применяемой Росстатом «системе национальных счетов» банковские услуги составляют 13 % ВВП. С точки зрения здравого смысла это — абсурдно высокая величина. Она объясняется тем, что, например, выдача кредита в 1 миллион рублей рассматривается как услуга стоимостью в 1 миллион рублей, эквивалентная выпечке и продаже 150 000 батонов хлеба. При всей высокой оценке тяжкого труда банковских боссов, клерков и охранников трудозатраты крестьян, мукомолов, пекарей, транспортников и продавцов 150 000 батонов хлеба, очевидно, несоизмеримо выше.

Нечеткость в неявной форме присутствует и в натуральных показателях. Пусть, например, выпущена партия из 1000 автомашин определенной марки. Нечеткость, связанная с этой партией, состоит в неопределенности реального срока службы автомашин, полезных и вредных эффектов от их эксплуатации. Для снятия этих неопределенностей необходимо, в частности, экономически оценить потери от гибели людей в автокатастрофах. Сколько стоит жизнь человека? При всем уважении к оценкам страховых компаний сама постановка этого вопроса вызывает неловкость. Многие этические и религиозные учения исходят из бесценности человеческой жизни. Из-за принципиальной недопустимости выражения стоимости человеческой жизни в денежных единицах не получили распространения, в частности, методы статистического контроля качества, основанные на учете народнохозяйственного ущерба от пропуска дефектных изделий при контроле.

Более подробно рассмотрим проблемы управления инвестиционными процессами. Одна из них — проблема сравнения инвестиционных проектов. С чисто финансовой точки зрения такой проект — это финансовый поток(cash flow), другими словами, поток платежей и поступлений, то есть последовательность моментов времени, каждому из которых соответствует некоторая величина платежей (для определенности учитываем их со знаком «минус») или поступлений (учитываем со знаком «плюс»). Как оценивать такие потоки в целом, как их сравнивать? Из многих характеристик потоков платежей рассмотрим здесь две — чистую приведенную величину, называемую в отечественных публикациях также чистой текущей стоимостью или чистым дисконтированным доходом (есть и иные названия) и обозначаемую NPV (Net Present Value), и внутреннюю норму доходности, или прибыли IRR (Internal Rate of Return).

При определении NPV, как известно, для приведения величин платежей и поступлений к одному моменту  времени используется постоянный дисконт-фактор. В реальности дисконт-фактор не является заранее известной функцией от времени и зависит от динамики как макроэкономических показателей — ставки рефинансирования Центрального банка РФ и индекса инфляции, так и микроэкономических — финансового положения инвестора, кредитной и депозитной ставок конкретного банка и др. Кроме того, размеры и моменты осуществления платежей и поступлений также могут быть известны лишь с некоторой точностью. Следовательно, как функция от неопределенных (размытых) величин такая характеристика инвестиционного проекта, как NPV, сама является неопределенной. Лишь частично эту неопределенность можно снять, рассматривая NPV как функцию одной независимой переменной — дисконт-фактора. Если все перечисленные неопределенности можно описать интервалами (то есть задать границы — «от» и «до»), то NPV также описывается интервалом, границы которого можно рассчитать с помощью подходов, развитых встатистике интервальных данных. В результате в ряде случаев становится невозможным сделать однозначный выбор при сравнении двух инвестиционных проектов по NPV. Дело в том, что сравнение чисел можно провести всегда, а сравнение интервалов — лишь тогда, когда они не пересекаются. Если же пересекаются — целесообразно заявить об эквивалентности двух рассматриваемых инвестиционных проектов по чистой текущей стоимости NPV.

Внутренняя норма доходности IRR — это значение постоянного дисконт-фактора q, при котором NPV как функция q обращается в 0. К сожалению, как хорошо известно, при «неудачном» распределении поступлений и платежей уравнение NPV(q) = 0 может иметь не одно, а много решений. В литературе указывают и некоторые иные причины, по которым IRR нецелесообразно использовать для сравнения потоков платежей. Кроме того, в случае IRR имеются те же источники неопределенности, что и для NPV — размытость дисконт-фактора, моментов и величин поступлений и платежей. Эта размытость приводит к необходимости рассматривать IRR как интервал, а при непустоте пересечения интервалов, соответствующих двум инвестиционным проектам, сравнение этих проектов сводится к утверждению об их равноценности.

Итак, рассмотренные характеристики инвестиционных проектов NPV и IRR, как  и любые иные, имеют неустранимые неопределенности. Игнорировать это  объективное обстоятельство, завышать точность экономических расчетов —  это значит обманываться самому либо вводить в заблуждение заказчиков расчетов.

Как же поступать при анализе  инвестиционных проектов? Рассмотрим два корректных подхода к такому анализу. Во-первых, можно постараться  явным образом учесть имеющиеся  неопределенности (в том числе  перечисленные выше) и применить  те или иные способы анализа неопределенных величин, в частности, разработанные  в теории нечеткости и в статистике объектов нечисловой природы (см., например, монографии [5,10]). Другими словами, требуется более тщательный экономико-математический анализ ситуации, предполагающий построение соответствующих эконометрических моделей, разработку и/или применение необходимого программного обеспечения. А для этого нужны обученные кадры, время и деньги.

Во-вторых, вместо расчетов можно  обратиться к интуиции специалистов, применив современные методыэкспертных оценок, в частности, основанные на сборе оценок экспертами нечисловых экономических величин и их анализе методами статистики объектов нечисловой природы. Для практического использования представляется перспективным оценивание в виде интервалов (частный случай применения теории нечетких множеств) и соответственно их анализ методами статистики интервальных данных. Применение комбинированных подходов, предполагающих использование систем, интегрирующих как эконометрические и экономико-математические модели, так и методы экспертных оценок — пока дело будущего.

 

Статистика интервальных данных —  научное направление на стыке  метрологии математической статистики 

В статистике интервальных данных (СИД) элементами выборки являются не числа, а интервалы, в частности, порожденные наложением ошибок измерения  на значения случайных величин. Подробнее  этот сравнительно новый, но весьма перспективный  раздел эконометрики рассмотрим в главе 9. Здесь дадим лишь общее представление  о статистике интервальных данных в  сравнении с классической математической статистикой. Прежде всего отметим, что СИД входит в теорию устойчивости (робастности) статистических процедур и примыкает к интервальной математике. В СИД изучены практически все задачи классической прикладной математической статистики, в частности, задачи регрессионного анализа, планирования эксперимента, сравнения альтернатив и принятия решений в условиях интервальной неопределенности и др. Основная идея СИД является общеинженерной — каждая величина должна приводиться вместе с погрешностью ее определения. К сожалению, эта идея еще не стала общеэкономической.

Рассмотрим развитие в  течение последних 15 лет асимптотических  методов статистического анализа  интервальных данных при больших  объемах выборок и малых погрешностях измерений. В отличие от классической математической статистики, сначала  устремляется к бесконечности объем  выборки и только потом — уменьшаются  до нуля погрешности. Разработана общая  схема исследования, включающая расчет двух основных характеристик — нотны (максимально возможного отклонения статистики, вызванного интервальностью исходных данных) и рационального объема выборки (превышение которого не дает существенного повышения точности оценивания и статистических выводов, связанных с проверкой гипотез). Она применена к оцениванию математического ожидания и дисперсии, медианы и коэффициента вариации, параметров гамма-распределения в ГОСТ 11.011-83 и характеристик аддитивных статистик, для проверки гипотез о параметрах нормального распределения, в том числе с помощью критерия Стьюдента, а также гипотезы однородности двух выборок по критерию Смирнова, и т. д.. Разработаны подходы к учету интервальной неопределенности в основных постановках регрессионного, дискриминантного и кластерного анализов.

Информация о работе Понятие Эконометрики.Математико-статистическая методология эконометрических исследований эконометрики