Автор работы: Пользователь скрыл имя, 28 Апреля 2015 в 11:30, курсовая работа
При реализации основных функций управления качеством в Системе менеджмента качества проводится оптимизация, как организационных структур всего промышленного предприятия, так и его подразделений.
Курсовая работа содержит описание основных этапов построения и решения математических моделей оптимизации организационных структур в системе менеджмента качества, в частности, отдела технического контроля промышленного предприятия
Введение
1. Цель и средства проведения работы
1.1 Цель работы:
1.2 Средства для проведения работы:
1.3 Исходные данные
2. Задача расчета оптимальной численности отдела технического контроля предприятия
2.1 Постановка задачи
2.2 Разработка математической модели оптимизации
3. Решение задачи оптимизации
3.1 Решение задачи оптимизации графическим методом
3.2 Решение задачи оптимизации методом математического моделирования
4. Реализация на ЭВМ
4.1 Код программы
4.2 Интерфейс и результаты вычисления программы
5. Анализ полученных результатов
6. Выводы
Список литературы
4. Реализация на ЭВМ
4.1 Код программы
Public x1, x2, x3, x4 As Double
Public x5, x6, z, d As Integer
Private Sub Command1_Click()
Command2.Enabled = True
Picture1.Cls
Picture2.Cls
x1 = Val(Text4) + Val(Text6) * Val(Text2) * (100 - Val(Text9)) / 100
x2 = Val(Text5) + Val(Text6) * Val(Text3) * (100 - Val(Text10)) / 100
x4 = Val(Text1) / (Val(Text2) * 8)
x3 = Val(Text1) / (Val(Text3) * 8)
Picture2.Print "Z = " & x1 * 8 & "*X1" & "+" & x2 * 8 & "*X2"
Picture2.Print Val(Text2) & "X1+" & Val(Text3) & "X2>=" & Val(Text1) / 8
Picture1.Line (40, 400)-(40, 10)
Picture1.PSet (44, 10), RGB(255, 255, 255)
Picture1.Print "X2"
Picture1.Line (40, 400)-(450, 400)
Picture1.Print "X1"
For i = 1 To 19
Picture1.Line (40, 400 - i * 20)-(35, 400 - i * 20)
Picture1.PSet (20, 400 - i * 20), RGB(255, 255, 255)
Picture1.Print i
Picture1.Line (40 + i * 20, 400)-(40 + i * 20, 405)
Picture1.PSet (30 + i * 20, 405), RGB(255, 255, 255)
Picture1.Print i
Picture1.Line (40 + Val(Text7) * 20, 10)-(40 + Val(Text7) * 20, 400)
Picture1.Line (40, 400 - Val(Text8) * 20)-(450, 400 - Val(Text8) * 20)
Picture1.Line (40, 400 - x3 * 20)-(40 + x4 * 20, 400), RGB(0, 255, 0)
Next
End Sub
Private Sub Command2_Click()
Picture3.Cls
x6 = (Val(Text1) - Val(Text2) * 8 * Val(Text7)) / (Val(Text3) * 8)
x5 = (Val(Text1) - Val(Text3) * 8 * Val(Text8)) / (Val(Text2) * 8)
z = Val(Text7) * x1 * 8 + Val(Text8) * x2 * 8
If Val(Text2) / Val(Text3) > x1 / x2 Then
d = x5 * 8 * x1 + Val(Text8) * 8 * x2
Picture3.Print d
Picture1.Line (40 + (z / (8 * x1) * 20) - (Val(Text7) - x5) * 20, 400)-(40 - (Val(Text7) - x5) * 20, 400 - (z / (8 * x2) * 20)), RGB(255, 0, 0)
Else
Picture1.Line (40 + (z / (8 * x1) * 20), 400 + (Val(Text8) - x6) * 20)-(40, 400 - (z / (8 * x2) * 20) + (Val(Text8) - x6) * 20), RGB(255, 0, 0)
d = Val(Text7) * 8 * x1 + x6 * 8 * x2
Picture3.Print d
End If
End Sub
Private Sub Command3_Click()
End
End Sub
Private Sub Command4_Click()
Form2.Show
End Sub
Private Sub Form_Load()
Command2.Enabled = False
End Sub
Программа написана на языке программирования Visual Basic v. 6.0
4.2 Внешний вид и результаты вычисления программы
Рис. 3 Результаты вычисления программы
На рис.3 показан интерфейс разработанной программы и результаты её вычисления.
5. Анализ полученных результатов
Сравнив значения оптимальных параметров найденных графическим методом и методом математического моделирования можно прийти к выводу, что они совпадают и погрешность расхождения результатов не превышает 0,5%.
Результаты проведенных исследований занесены в бланк отчета:
Исходные данные:
№ |
N |
n1 |
n2 |
S1 |
S2 |
C |
M1 |
M2 |
β1 |
β2 |
п/п |
шт. |
шт. |
шт. |
ДЕ/час |
ДЕ |
шт. |
шт. |
% |
% | |
8 |
3000 |
33 |
27 |
7 |
5 |
0,6 |
13 |
12 |
98 |
96 |
Условные обозначения величин:
N - норма выработки изделий группой контролеров ОТК за 8-ми часовой рабочий день;
n1 - Количество изделий, проверяемых контролером 1 разряда в час;
n2 - Количество изделий, проверяемых контролером 2 разряда в час;
S1 - Заработная плата контролера 1 разряда;
S2 - Заработная плата контролера 2 разряда;
С - Убыток, который несет предприятие при каждой ошибке контролера;
М1 - Количество контролеров 1 разряда, которое может использовать предприятие;
М2 - Количество контролеров 2 разряда, которое может использовать предприятие;
В1 - %случаев, когда контролер 1 разряда не ошибается;
В2 - % случаев, когда контролер 2 разряда не ошибается;
Формирование математической модели оптимизации
Функция цели:
Модель функционирования:
Областные ограничения:
х1 ≤ М1;
х2 ≤ М2;
х1 ≥ 0;
х2 ≥ 0.
Результаты вычислений:
х1опт =1,5;
х2опт = 12;
Zопт = 631.
Таким образом, оптимальное количество контролеров 1 разряда (х1) равно 1,5 ед. (при недопустимости неполной загрузки контролеров округляется до 2), а контролеров 2 разряда (х2) равно 12 ед., при этом минимизируемая целевая функция Z, выражающая ежедневные расходы на контроль равна 631 ДЕ.
6. Выводы
В ходе выполнения курсовой работы были изучены описания основных этапов построения и решения математических моделей оптимизации организационных структур в системе менеджмента качества, в частности, отдела технического контроля промышленного предприятия. Реализованы решения задач расчета оптимальной численности отдела технического контроля предприятия графическим методом и методом математического моделирования, которые часто используются при оптимизации как организационных структур всего промышленного предприятия, так и его подразделений при реализации основных функций управления качеством.
Приобретены практические навыки построения и решения математических моделей оптимизации в системе менеджмента качества.
Освоены приемы применения средств вычислительной техники для решения оптимизационных задач – разработана программа, реализующая данные методы и существенно упрощающая процесс поиска оптимального решения.
Список литературы