Гидро-климатические условия на космических снимках

Автор работы: Пользователь скрыл имя, 11 Марта 2014 в 20:16, реферат

Описание работы

Правильное картографическое изображение гидрографической сети — рек, озер и водохранилищ имеет большое научное и практическое значение. Водные объекты являются существенными элементами содержания большинства географических карт и во многом определяют их «лицо». Прежде всего это относится к топографической карте — главной карте государства.

Содержание работы

Введение___________________________________________ 1
Методические вопросы использования дистанционной информации___________________________ 3
Оптимальные сроки дистанционной съёмки рек, озер и водохранилищ_______________________ 8
Дешифрирование вод на аэрокосмических фотоснимках______________________________________13
Заключение_________________________________________ 21

Файлы: 1 файл

9.doc

— 469.00 Кб (Скачать файл)

Оптимальные сроки дистанционной съемки рек, озер и водохранилищ

Береговая линия рек, озер и водохранилищ наносится на типографическую карту по фотоизображению. В большинстве случаев граница воды и суши непостоянна и смещается в плане на величину, зависящую от амплитуды колебаний уровня воды и угла наклона берегового склона. Допустимая величина смещения береговой линии на местности во время дистанционной съемки при картографировании в разных масштабах неодинакова. При расчете табличных данных принято, что сдвиг береговой линии не должен превышать 0,5 мм на карте. Это соответствует средней ошибке положения. на ней контуров местности.

Как видно из таблицы, наиболее жесткие требования к стабильности планового положения береговой линии водных объектов предъявляются при создании карт крупного масштаба Уклоны аккумулятивных берегов многих рек Сибири составляют всего несколько градусов, а колебания уровня воды даже после схода половодья или в период между паводками исчисляются метрами. В этих условиях возникает необходимость строгого учета уровенного состояния водных объектов при аэрокосмической съемке в картографических целях.

Речная и озерная сеть должны изображаться на карте по состоянию на картографический уровень воды. Но в связи постоянно изменяющимся уровнем воды (например, на р. Нижняя Тунгуска суточная амплитуда колебаний может достигать 1-2 м.) зафиксировать на снимке очертания водных объектов по состоянию на заранее установленный уровень воды трудно. Иногда для этого необходимо провести дорогостоящие и трудоемкие работы. Практически при проведении аэрокосмических съемок в картографических целях ориентируются на примерное соответствие мгновенного (при фотографировании) уровня воды срезочному, принятому для ближайшего водомерного поста. При этом каких-либо критериев, регламентирующих предельно допустимые отклонения уровня воды во время съемки от принятого за оптимальный, нет. Поэтому нередки случаи, когда дистанционная съемка выполняется в произвольные сроки, без учета уровенного состояния водных объектов, что приводит к неудовлетворительным результатам.

Вопрос обоснования уровенных условий съемки вод требует специальной проработки. Величина допустимой амплитуды колебаний уровня воды должна дифференцироваться для каждого участка водотока или для каждого озера. Так, средняя многолетняя амплитуда колебаний уровня воды открытого русла на р. Подкаменной Тунгуске изменяется по длине реки следующим образом: в верхнем течении — на 1 м, в среднем (с. Ванавара) — на 6 м, в нижнем (с. Байкит) — на 12 м.

Если принять единый допуск на отклонение мгновенного (при дистанционной съемке) уровня воды от установленной нормы по какому-то одному посту, то этот допуск не будет «работать» при удалении вверх или вниз по течению реки. Например, если за исходный пункт принять створ у с. Ванавара, то приемлемая для него величина отклонения уровня воды от принятой нормы будет завышенной для верховьев реки и недостаточной для низовьев. В первом случае (верховье реки) допустимый для створа у с. Ванавара интервал уровня воды будет больше его годовой амплитуды, во втором (низовье реки) — он окажется явно недостаточным. Следовательно, рассматриваемый допуск должен соотноситься с амплитудой колебаний уровня воды, этому критерию удовлетворяет картографический интервал уровней воды, так как его величина функционально связана с амплитудой колебаний уровня воды в любом створе реки или в озере.

При проведении аэрокосмической съемки в целях создания или обновления топографических карт, а также для решения ряда задач комплексного изучения и картографирования природных условий и ресурсов необходимо иметь следующую информацию о состоянии вод исследуемой территории: во-первых, когда наблюдается фаза водности, уровни воды при которой находятся в пределах картографического интервала высот; во-вторых, какова продолжительность стояния уровней воды (число дней в году) в картографическом интервале высот. Последняя важна для оценки категории сложности съемки.

Для определения этих параметров на опорных гидрологических створах рек Сибири вычислены: картографический уровень воды; картографический интервал уровней воды; средняя годовая повторяемость уровней воды в картографическом интервале высот. Далее, по данным стандартных гидрологических наблюдений Гидрометеослужбы, установлено наилучшее время дистанционной съемки, т. е. месяцы, в которые наблюдалась наибольшая повторяемость уровней воды в оптимальной шкале высот. По полученным материалам построены карты наилучших сроков аэрокосмической съемки рек в картографических целях (рис. 71, 72). При этом выявлено, что продолжительность стояния уровней воды в картографическом интервале высот изменяется зонально и по высотным поясам, т. е. отражает общие географические закономерности гидрологического режима рек. Так, в пределах Среднесибирского плоскогорья на широте 55—60" этот параметр для рек местного стока равен приблизительно 100 дней, на широте 70°— 30 дней. В горах с увеличением высоты он уменьшается. Например, в северных предгорьях Саян он находится в пределах 80—90 дней, а в верхнем поясе гор сокращается до 30 дней в году.

 

 

Оптимальные сроки дистанционной съемки крупных, особенно зарегулированных рек, могут не совпадать со сроками съемки рек местного стока. В этих случаях целесообразна дополнительная съемка по маршрутам вдоль крупных рек. Возможно также использование материалов ранее выполненных аэрокосмических съемок, удовлетворяющих поставленным требованиям. Этот вариант более экономичный, так как космические съемки ведутся несколько раз в год, а плановые деформации русел рек за 1—2 года в большинстве случаев не превышают графическую точность даже крупномасштабных карт. При дистанционной съемке половодий и паводков на реках необходима оперативная информация территориальных управлений по гидрометеорологии, поскольку время их наступления и максимального развития находится в зависимости от гидрометеорологических условий конкретного года.

Годовой ход уровня воды озер в целом повторяет ход уровня воды рек. Поэтому сроки их аэрокосмической съемки практически совпадают.

Водохранилища, за исключением мелких, наносятся на топографическую карту при нормальном подпорном уровне воды. Аэрокосмическая съемка их должна выполняться после наполнения, что для большинства крупных водохранилищ Сибири отмечается в сентябре (Новосибирское водохранилище — в июле, Усть-Илимское — в августе). Уровни воды, близкие к НПУ, держатся практически до появления ледовых явлений. Как и для рек, для водохранилищ можно обозначить допустимые пределы высоты уровня воды во время дистанционной съемки. Такой интервал ΔА зависит от величины проектной сработки водохранилища А и вычисляется по формуле

ΔАвдхр=НПУ±0,1А.

Для отображения сезонной динамики береговой линии целесообразно наносить на карту положение уреза воды и при сработке водохранилищ. Поэтому дистанционная съемка их должна производиться в два срока, т. е. дополнительно еще весной, сразу после очищения воды ото льда. Для водохранилищ юга Сибири, это время обычно наступает в конце апреля-начале мая, для северных водохранилищ-во второй половине июня или в начале июля.

 

Дешифрирование вод на аэрокосмических фотоснимках

В связи с развитием дистанционных исследований методика тематического дешифрирования снимков быстро наполняется новым содержанием. Двигателем этого прогресса является практическая необходимость значительного расширения круга изучаемых природоведческих проблем (ресурсного, динамического, прогнозного и других направлений), а также внедрение автоматизированных систем обработки дистанционной информации, что требует более глубокого учета географических закономерностей и взаимосвязей между компонентами природной среды. Новые подходы, базирующиеся на комплексной интерпретации мелкомасштабных снимков, особенно заметны в космическом землеведении.

С уменьшением масштаба на снимке теряются многие детали изображения природной среды, но в результате «космической» (спектральной, геометрической и тематической) генерализации на нем «проявляется» новая информация. Например, за счет более высокой степени визуализации крупных полей с различной оптической плотностью надежно дешифрируются линеаменты, кольцевые структуры, морские течения и другие природные объекты и явления. С другой стороны, потеря деталей привела к необходимости более глубокого учета взаимосвязей между составляющими природных комплексов (выявления косвенных, ландшафтных признаков дешифрирования), что в свою очередь значительно повысило достоверность результатов.

Известно, что объем регистрируемой на снимке информации во многом зависит от спектрального  диапазона съемки. При   съемке   в   видимом   диапазоне   электромагнитных  волн   (0,4—0,8 мкм) определяющее значение имеет интегральная яркость объекта, а при съемке в узком диапазоне — спектральная.

Природные тела (вода, растительность, горные породы и др.) характеризуются различной отражательной способностью, которая дифференцируется также для фиксированных длин электромагнитных воли. Эксперименты показали, что, несмотря на влияние на яркостные характеристики местности внешних факторов (высоты солнца, прозрачности атмосферы и др.), выделяются длины электромагнитных волн, в которых та или иная группа объектов регистрируется на снимке более контрастно.

На графике видно, что, например, для целей гидрологического дешифрования повышенной информативностью обладают снимки, полученные в диапазоне 0,6—0,8 мкм. В этом случае водная поверхность резко «вычленяется» на фоне изображения других природных образований. Появляется широкая возможность автоматизированного распознавания объектов посредством математической формализации процесса дешифрирования и использования современных систем цифровой обработки изображений.

Методика топографического и тематического специального' дешифрирования природных объектов и явлений на дистанционных снимках базируется на общих принципах, изложенных в ряде работ.

При топографическом картографировании главное внимание уделяется отображению внешних очертаний объектов местности, показу их взаимного расположения и раскрытию внутренних свойств. Эти так называемые топографические объекты местности определяют главное содержание карт соответствующих масштабов и назначения (использование в народном хозяйстве, в Вооруженных Силах, при решении задач научно-исследовательского характера и др.).

Основное содержание тематических карт, в частности карт природы, представляет отображение того или иного элемента или явления (элементов или явлений) физико-географической среды — вод, растительного покрова, почв, ландшафтов и т. д. Некоторые карты могут содержать узкую специальную информацию: мутность вод, норма стока, корневые гнили леса и др. При тематической интерпретации аэрокосмических снимков широко используется ландшафтный метод дешифрирования.

Набор современных средств и методов изучения природной среды с использованием дистанционной информации очень широк. Он включает применение самолетных и космических съемок, привлечение картографических, справочно-географических, литературных и фондовых источников, проведение полевых работ. Многие авторы отмечают большие преимущества космических материалов при создании серий взаимосвязанных тематических карт, т. е. при реализации комплексного изучения и картографирования природных условий и ресурсов. Все это относится и к дистанционному исследованию вод.

Гидрологический анализ аэрокосмических снимков предполагает знание не только прямых (видимых) признаков дешифрирования, но и учет существующих в природных комплексах взаимосвязей и взаимозависимостей, как на региональном, так и на глобальном уровнях. Устанавливаемые в полевых условиях гидрологические дешифровочные признаки целесообразно систематизировать в виде аэрокосмофотоэталонов, которые в оптимальном варианте должны представлять собой наборы разномасштабных, разновременных и разнотипных снимков с отдешифрированными на них гидрологическими элементами и комплексами природной среды, характеризующими сущность и динамику происходящих гидрологических процессов. При этом необходимо устанавливать технические и природные параметры съемки, которым соответствует ландшафтно-гидрологическая интерпретация эталонного фотоизображения. В данных условиях основные количественные и качественные характеристики вод, снятые с эталонов, можно экстраполировать в границах ландшафта определенного ранга.

Распознавание открытых водных поверхностей, снега и льда на материалах аэрокосмической съемки производят в основном по прямым признакам дешифрирования. Снимки, полученные в видимой области электромагнитного спектра, весьма информативны для дешифрирования речной и озерной сети, заснеженности территории, ледовой обстановки, что объясняется значительной вариацией спектральных коэффициентов яркости указанных объектов — от 0,1 для чистых и глубоких водных масс в спокойном состоянии до 0,9 для свежевыпавшего снега. Главными дешифровочными признаками поверхностных вод являются: ровный фототон и специфическая монотонная или выразительная структура изображения воды, снега и льда; извилистость непрерывно линейно вытянутого рисунка рек; овальная форма озер и приуроченность водотоков и водоемов к пониженным элементам рельефа.

По темному фототону и вытянутой форме уверенно распознаются реки шириной до 0,05—0,07 мм в масштабе снимка, что соответствует его разрешающей способности 10/15 линий/мм. Меньше указанного предела реку на снимке обычно не видно. При этом большое значение имеют факторы, обусловливающие резкость и градационную характеристику фотографического материала: внешние условия съемки, структура эмульсионного слоя и режим фотографической обработки, от которых во многом зависит информационная емкость снимка. Как показали   исследования, проведенные в ЦНИИГАиК, дешифрируемость цветных снимков на 15—30% выше соответствующего показателя черно-белых панхроматических изображений.

Таким образом, на наиболее распространенных среднемасштабных (1:200000) и мелкомасштабных (1:1000000) космических снимках по прямым признакам надежно распознаются относительно крупные реки. Озера дешифрируются, когда становится различимой их форма. Но при большом скоплении озер иногда удается опознать даже очень мелкие из них, которые изображаются на снимке в виде небольших точек. Поэтому при дешифрировании поверхностных вод косвенные признаки имеют особое значение.

Если прямые признаки дешифрирования на разномасштабных снимках относительно стабильны в любых ландшафтах, то косвенные признаки следует отнести к категории мобильных, потому что они способны варьировать в очень широких пределах при изменении масштаба съемки, а также в значительной степени зависеть от природных условий. Так, фототон водной поверхности и конфигурацию рек, каналов, озер и водохранилищ можно считать одинаковыми как в лесной, так и в степной или тундровой зонах. Однако увлажненные выше фонового уровня территории индицируются в лесной зоне по угнетенной растительности, а в степной, наоборот, по буйной растительности. Примеры такого рода очень многочисленны, так как косвенные (ландшафтные) признаки могут быть весьма «тонкими» и иметь локальный характер. Рассмотрим основные признаки дешифрирования поверхностных вод на конкретном материале.

Информация о работе Гидро-климатические условия на космических снимках