Классификация двигателей летательных аппаратов. Поршневые двигатели

Автор работы: Пользователь скрыл имя, 02 Мая 2015 в 19:27, реферат

Описание работы

К авиационным двигателям относятся все типы тепловых машин, используемых как движители для летательных аппаратов авиационного типа, т. е. аппаратов, использующих аэродинамическое качество для перемещения, маневра и т. п. в пределах атмосферы (самолеты, вертолеты, крылатые ракеты классов "В-В", "В-3", "3-В", "3-3", авиакосмические системы и др.). Отсюда вытекает большое разнообразие применяемых двигателей — от поршневых до ракетных.

Содержание работы

1. Классификация двигателей летательных аппаратов…………3
2. Поршневые двигатели………………………………………….6
2.1.Классификация………………………………………………...7
2.2.Принцип работы поршневого двигателя…………………….9
2.3.Конструктивная схема………………………………………..12
Список использованной литературы…………………………...14

Файлы: 1 файл

Двигатели.docx

— 59.48 Кб (Скачать файл)

Министерство образования и науки Украины 
Национальный аэрокосмический университет им. Н.Е.Жуковского «ХАИ»

 

 

 

 

 

Реферат

по дисциплине: «Инженерные основы АКТ»

на тему: «Классификация двигателей летательных аппаратов.

Поршневые двигатели»

 

 

                                                                   

                                                                    Выполнила: студентка гр.612э

                                                                    Пятница Кристина Юрьевна

                                                                   Проверил: доцент кафедры 204

                                                                    Горбачов Алексей Александрович

 

 

 

 

 

 

 

 

 

 

Харьков 2015

                                       Содержание

 

  1. Классификация двигателей летательных аппаратов…………3
  2. Поршневые двигатели………………………………………….6

2.1.Классификация………………………………………………...7

    2.2.Принцип  работы поршневого двигателя…………………….9

    2.3.Конструктивная  схема………………………………………..12

    Список  использованной литературы…………………………...14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.Классификация  двигателей летательных аппаратов

К авиационным двигателям относятся все типы тепловых машин, используемых как движители для летательных аппаратов авиационного типа, т. е. аппаратов, использующих аэродинамическое качество для перемещения, маневра и т. п. в пределах атмосферы (самолеты, вертолеты, крылатые ракеты классов "В-В", "В-3", "3-В", "3-3", авиакосмические системы и др.). Отсюда вытекает большое разнообразие применяемых двигателей — от поршневых до ракетных.

Авиационные двигатели (рис.1) делятся на три обширных класса:

  • поршневые (ПД);

  • воздушно-реактивные (ВРД включая ГТД);

  • ракетные (РД или РкД).

Более детальной классификации подлежат два последних класса, в особенности класс ВРД.

По принципу сжатия воздуха ВРД делятся на:

  • компрессорные, т. е. включающие компрессор для механического сжатия воздуха;

  • бескомпрессорные:

    • прямоточные ВРД (СПВРД) со сжатием воздуха только от скоростного напора;

    • пульсирующие ВРД (ПуВРД) с дополнительным сжатием воздуха в специальных газодинамических устройствах периодического действия.

Класс ракетных двигателей ЖРД также относится к компрессорному типу тепловых машин, так как в этих двигателях сжатие рабочего тела (топлива) осуществляется в жидком состоянии в турбонасосных агрегатах.

Ракетный двигатель твердого топлива (РДТТ) не имеет специального устройства для сжатия рабочего тела. Оно осуществляется при начале горения топлива в полузамкнутом пространстве камеры сгорания, где располагается заряд топлива.

По принципу  действия существует такое деление: 

ПД и ПуВРД работают по циклу периодического действия, тогда как в ВРД, ГТД и РкД осуществляется циклнепрерывного действия. Это дает им преимущества по относительным показателям мощности, тяги, массе и др., что и определило, в частности, целесообразность их использования в авиации.

По принципу создания реактивной тяги ВРД делятся на:

  • двигатели прямой реакции;

  • двигатели непрямой реакции.

Двигатели первого типа создают тяговое усилие (тягу Р) непосредственно — это все ракетные двигатели (РкД), турбореактивные без форсажа и с форсажными камерами (ТРД и ТРДФ), турбореактивные двухконтурные (ТРДД и ТРДДФ), прямоточные сверхзвуковые и гиперзвуковые (СПВРД и ГПВРД), пульсирующие(ПуВРД) и многочисленные комбинированные двигатели.

Газотурбинные двигатели непрямой реакции (ГТД) передают вырабатываемую ими мощность специальному движителю (винту, винтовентилятору, несущему винту вертолета и т. п.), который и создает тяговое усилие, используя тот же воздушно-реактивный принцип (турбовинтовые, турбовинтовентиляторные,турбовальные двигатели — ТВД, ТВВД, ТВГТД). В этом смысле класс ВРД объединяет все двигатели, создающие тягу по воздушно-реактивному принципу.

 

На основе рассмотренных типов двигателей простых схем рассматривается ряд комбинированных двигателей, соединяющих особенности и преимущества двигателей различных типов, например, классы:

  • турбопрямоточных двигателей — ТРДП (ТРД или ТРДД + СПВРД);

  • ракетно-прямоточных - РПД (ЖРД или РДТТ + СПВРД или ГПВРД);

  • ракетно-турбинных — РТД (ТРД + ЖРД);

и многие другие комбинации двигателей более сложных схем.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Поршневые  двигатели

Поршневой двигатель — двигатель внутреннего сгорания, в котором тепловая энергия расширяющихся газов, образовавшаяся в результате сгорания топлива в замкнутом объёме, преобразуется в механическую работу поступательного движения поршня за счёт расширения рабочего тела (газообразных продуктов сгорания топлива) в цилиндре, в который вставлен поршень.

Поступательное движение поршня преобразуется во вращение коленчатого вала кривошипно-шатунным механизмом.

Поршневой двигатель внутреннего сгорания сегодня является самым распространённым тепловым двигателем. Он используется для привода средств наземного, воздушного и водного транспорта, боевой, сельскохозяйственной и строительной техники, электрогенераторов, компрессоров, водяных насосов, помп, моторизованного инструмента (бензорезок (бензо-болгарок), газонокосилок, бензопил) и прочих машин, как мобильных, так и стационарных, и производится в мире ежегодно в количестве нескольких десятков миллионов изделий.

Мощность поршневых двигателей внутреннего сгорания колеблется в пределах от нескольких ватт (двигатели авиа-, мото- и судомоделей) до75 000 кВт (судовые двигатели).

В качестве топлива в поршневых двигателях внутреннего сгорания используются:

  • жидкости — бензин, дизельное топливо, спирты, биодизель;

  • газы — сжиженный газ, природный газ, водород, газообразные продукты крекинга нефти, биогаз;

  • монооксид углерода, вырабатываемый в газогенераторе, входящем в состав топливной системы двигателя, из твёрдого топлива (угля, торфа, древесины).

    В рамках технической термодинамики работа поршневых двигателей внутреннего сгорания в зависимости от особенностей их циклограмм описывается термодинамическими циклами Отто, Дизеля, Тринклера, Аткинсона или Миллера.

Эффективный КПД поршневого ДВС не превышает 60 %. Остальная тепловая энергия распределяется, в основном, между теплом выхлопных газов и нагревом конструкции двигателя. Поскольку последняя доля весьма существенна, поршневые ДВС нуждаются в системе интенсивного охлаждения. Различают системы охлаждения:

  • воздушные, отдающие избыточное тепло окружающему воздуху через ребристую внешнюю поверхность цилиндров; используются в двигателях сравнительно небольшой мощности (десятки л.с.), или в более мощных авиационных двигателях, работающих в быстром потоке воздуха;

  • жидкостные, в которых охлаждающая жидкость (вода, масло или антифриз) прокачивается через рубашку охлаждения(каналы, созданные в стенках блока цилиндров), и затем поступает в радиатор охлаждения, в котором теплоноситель охлаждается потоком воздуха, созданным вентилятором.

    • Иногда в некоторых деталях (например, выпускные клапана) в качестве теплоносителя используется металлический натрий, расплавляемый теплом двигателя при его прогреве.

 

 

2.1.Классификация 

Авиационные поршневые двигатели могут быть классифицированы по различным признакам:

  • В зависимости от рода применяемого топлива - на двигатели легкого или тяжелого топлива.

  • По способу смесеобразования - на двигатели с внешним смесеобразованием (карбюраторные) и двигатели с внутренним смесеобразованием (непосредственный впрыск топлива в цилиндры).

  • В зависимости от способа воспламенения смеси - на двигатели с принудительным зажиганием и двигатели с воспламенением от сжатия.

  • В зависимости от числа тактов - на двигатели двухтактные и четырехтактные.

  • В зависимости от способа охлаждения - на двигатели жидкостного и воздушного охлаждения.

  • По числу цилиндров - на двигатели четырехцилиндровые, пятицилиндровые, двенадцатицилиндровые и т.д.

  • В зависимости от расположения цилиндров — на рядные (с расположением цилиндров в ряд) и звездообразные (с расположением цилиндров по окружности).

Рядные двигатели в свою очередь подразделяются на однорядные, двухрядные V-образные, трехрядные W-образные, четырехрядные Н-образные или Х-образные двигатели. Звездообразные двигатели также подразделяются на однорядные, двухрядные и многорядные.

  • По характеру изменения мощности в зависимости от изменения высоты - на высотные, т.е. двигатели, сохраняющие мощность с подъемом самолета на высоту, и невысотные двигатели, мощность которых падает с увеличением высоты полета.

  • По способу привода воздушного винта - на двигатели с прямой передачей на винт и редукторные двигатели.

Современные авиационные поршневые двигатели представляют собой звездообразные четырехтактные двигатели, работающие на бензине. Охлаждение цилиндров поршневых двигателей выполняется, как правило, воздушным. Ранее в авиации находили применение поршневые двигатели и с водяным охлаждением цилиндров.

Сгорание топлива в поршневом двигателе осуществляется в цилиндрах, при этом тепловая энергия преобразуется в механическую, так как под действием давления образующихся газов происходит поступательное движение поршня. Поступательное движение поршня в свою очередь преобразуется во вращательное движение коленчатого вала двигателя через шатун, являющийся связующим звеном между цилиндром с поршнем и коленчатым валом.

 

2.2. Принцип работы поршневого двигателя

Работа поршневых двигателей внутреннего сгорания основана на использовании силы давления газов при расширении их вследствие нагрева внутри цилиндра. Нагреваются газы от сгорания в цилиндре жидкого или газообразного топлива, перемешанного с воздухом, причем с целью лучшего перемешивания жидкого топлива с воздухом его тщательно распыляют и по возможности испаряют.

Газы, нагревшиеся при этом, стремясь расшириться, давят на стенки камеры сгорания и цилиндра, а также на днище поршня. Поршень под действием давления газов движется к н.м.т. и через шатун передает воспринимаемое им давление газов коленчатому валу, сообщая последнему вращательное движение.

Так в цилиндре двигателя происходят два основных процесса: сгорание смеси и расширение продуктов сгорания, вследствие чего химическая энергия топлива превращается в тепловую, затем частично в механическую энергию. Для обеспечения непрерывной работы двигателя в его цилиндры должны периодически поступать все новые и новые порции воздуха и топлива, а продукты сгорания соответственно удаляться. Для этого в конструкции двигателя предусматривают механизмы, позволяющие осуществлять вспомогательные процессы, связанные со сменой рабочего тела в цилиндрах.

В двигателе впуск смеси воздуха с топливом и выпуск отработавших газов, т. е. смена рабочего тела в цилиндре, осуществляется с помощью клапанов, управляемых специальным механизмом газораспределения, кинематически связанным с коленчатым валом. Совместная работа кривошипно-шатунного механизма и механизма газораспределения позволяют осуществлять необходимую для непрерывного действия двигателей последовательность в чередовании комплекса основных и вспомогательных процессов в каждом цилиндре.

Информация о работе Классификация двигателей летательных аппаратов. Поршневые двигатели