Роль космоса в развитии биосферы

Автор работы: Пользователь скрыл имя, 17 Июня 2013 в 13:19, реферат

Описание работы

учение о биосфереВпервые понятие биосфера, как "область жизни", было введено в науку Ж.Б. Ламарном в начале 19 века, а в геологию Э. Зюссом в 1875 г. Он понимал под этим термином совокупность всех организмов. Это определение близко к современному понятию биота.

Содержание работы

1.Биосфера. Основные функции и свойства живого вещества.
1.1.Граници биосферы.
2.Космологический смысл учения о биосфере.
3.Космический цикл, как важнейший фактор существования биосферы.
4. Ритмы космоса и здоровье человека.
4.1.Цикличность природных и организменных процессов.
4.2.Космос и биологические ритмы.
5.Воздействие Солнца на Землю.
5.1.Солнечная радиация.
6.Гравитация.
7.Воздействие малых космических тел.
8.Краткосрочные последствия столкновений.
Список литературы.

Файлы: 1 файл

мой реферат.docx

— 54.97 Кб (Скачать файл)

Самое сильное проявление солнечной активности, влияющее на Землю, солнечные вспышки. Они появляются в активных областях со сложным строением магнитного поля и затрагивают всю толщу солнечной атмосферы. Энергия большой солнечной вспышки достигает огромной величины, сравнимой с количеством солнечной энергии, получаемой нашей планетой в течение целого года. Это приблизительно в 100 раз больше всей тепловой энергии, которую можно было бы получить при сжигании всех разведанных запасов полезных ископаемых.Во вспышечно-активных областях основная последовательность вспышек большой и средней мощности происходит за ограниченный интервал времени (40-60 часов), в то время как малые вспышки и свечения наблюдаются практически постоянно. Это приводит к подъему общего фона электромагнитного излучения Солнца. Поэтому для оценки солнечной активности, связанной со вспышками, стали применять специальные индексы, напрямую связанные с реальными потоками электромагнитного излучения.

Наглядно рассказать о  последствиях солнечной вспышки  может катастрофа, разыгравшаяся  в азиатско-тихоокеанском регионе в марте 2010 года. Вспышки наблюдались с 7 по 9 марта, минимальный балл - C1.4, максимальный - M5.3. Первым отреагировало на возмущение магнитного поля 10.03.2011 в 04:58:15(UTC time) землетрясение [24.72 с.ш. 97.97 в.д.],

гипоцентр на глубине 23 км. Магнитуда  составила 5.5. На следующие сутки – ещё одна вспышка, но ещё более мощная. Вспышка балла X1.5- одна из самых сильных за последние годы. Ответ Земли - сначала землетрясение магнитудой 9.0 [38.322°С.Ш., 142.369°В.Д.];гипоцентр располагался на глубине-32 км. Эпицентр землетрясения находился в 373 км от столицы Японии-Токио.

За землетрясением последовало  разрушительное цунами, изменившее облик  восточного побережья о. Хонсю. Также  на мощную вспышку отреагировали вулканы. Вулкан Карангетанг, считающийся одним из самых активных в Индонезии, начал извергаться в пятницу через несколько часов после мощного землетрясения в Японии. Начали извергаться японские вулканы Киришима и Синмоэ.С 7 марта до 29 марта солнечная активность выше обычной и с 7 по 29 марта в азиатско-тихоокеанском, индийском регионах не прекращаются землетрясения (АТ. регион - магнитуда от 4, и. регион – магнитуда от 3).[19, 20,21]

 

                                           5.1.Солнечная радиация.

  Под солнечной радиацией  понимается весь испускаемый  Солнцем поток радиации, который  представляет собой электромагнитные  колебания различной длины волны .Более длинные волны – радиоволны, более короткие – гамма-лучи, ионизирующее излучение не доходят до поверхности Земли, потому что задерживаются в верхних слоях атмосферы, в озоновом слое в частности.

Солнечная радиация является главным источником энергии для  всех физико-географических процессов, происходящих на земной поверхности и в атмосфере.Интенсивность солнечного излучения – весной покрываются листвой деревья, осенью листва опадает, затухают обменные процессы, многие животные впадают в спячку и т.д. Человек не является исключением. На протяжении года у него меняется интенсивность обмена, состав клеток тканей, причем эти колебания различны в разных климатических поясах.В связи с повышением радиационного фона значительно возросло число спонтанных, стихийных, вредных мутаций как у животных, так и у человека.

  Солнце – это главная сила, управляющая климатической системой и даже самые незначительные изменения в количестве солнечной энергии могут иметь серьезные последствия для климата земли. Солнечная активность увеличивается и уменьшается каждые одиннадцать лет (или, как полагают некоторые специалисты, каждые двадцать два года) солнечного цикла. За последние 3 миллиона лет регулярные колебания количества солнечного света, падающего на поверхность планеты, вызвали серию ледниковых периодов, перемежавшихся короткими теплыми межледниковыми интервалами. В соответствии с гипотезой Миланковича полушария Земли в результате изменения ее движения могут получать меньшее или большее количество солнечной радиации, что отражается на глобальной температуре. За миллионы лет сменилось множество климатических циклов. В конце последнего ледникового периода ледяной покров, в течение 100 тысяч лет сковывавший север Европы и Северной Америки, начал уменьшаться и 6 тысяч лет назад исчез. Многие ученые считают, что развитие цивилизации приходится в основном на теплый промежуток между ледниковыми периодами.Поступающая на поверхность Земли солнечная радиация является основной энергетической базой формирования климата.

  Благодаря взаимосвязи  между приходящей солнечной радиацией  и поверхностью Земли,солнечная радиация оказывает активное влияние на самые различные процессы на Земле, в том числе и на ее биосферу. В.И. Вернадский,говоря о факторах, влияющих на развитие биосферы, указывал среди прочих и солнечную радиацию. Так, он подчеркивал, что без космических светил, в частности без Солнца, жизнь на Земле не могла бы существовать. Живые организмы трансформируют солнечное излучение в земную энергию (тепловую, электрическую, химическую, механическую) в масштабах, определяющих существование биосферы. Перерабатывая солнечную энергию, живое вещество преобразует всю нашу планету. В этом смысле можно считать, что происхождение, образование и функционирование биосферы является результатом действия в том числе и солнечной радиации.

   Для растений наибольшее  значение имеет область физиологической  радиации, оказывающей существенное  влияние на процессы фотосинтеза, роста и развития.Из приходящей к растениям физиологической радиации ими поглощается около 80 %, отражается 10 и пропускается 10 %.Лучистая энергия, вызывая изменения в ходе физиологических процессов, в конечном итоге является мощным фактором формообразования растений. Продолжительность освещения определяет, а зачастую изменяет внешний вид растения.

 Очень важно и многообразно  влияние солнечной радиации на  животных. Солнечная радиация оказывает  мощное биологическое действие, стимулирует физиологические процессы в организме, изменяет обмен веществ и общий тонус организма.Наиболее сильное действие оказывают ультрафиолетовые лучи.Под воздействием УФЛ в коже животных из провитамина 7-дегидрохолестерина образуется витамин D3 регулирующий фосфорно-кальциевый обмен и предохраняющий молодых особей от рахита, а взрослых – от остеомаляции.

   Большое значение  имеет бактерицидный эффект УФЛ, в результате чего происходит обеззараживание воздуха, почвы, воды. Наиболее характерной реакцией организма человека на воздействие УФЛ является развитие пигментации (загар). Передозировка ультрафиолетового облучения может привести к ожогам и раздражению кожи, головным болям, повышению температуры тела.

   1. Поступающая на  Землю прямая солнечная радиация  и отраженная от земной поверхности  рассеянная солнечная радиация, являются основными источниками энергии на планете.

2. Солнечная радиация, поставляющая  на Землю тепло и свет, имеет  важнейшее значение в генезисе  климата, представляя собой основную причину почти всех метеорологических явлений и процессов, происходящих на земной поверхности и в атмосфере.

3. Солнечная радиация  – один из важных факторов  жизнедеятельности растений и  животных, в значительной степени  определяющий их продуктивность.

 

                                                6. Гравитация.

В Солнечной системе действуют  мощные силы тяготения - гравитация. Солнце и планеты притягиваются друг к другу. Кроме того, существуют и собственное поле тяготения каждой планеты. Эта сила тем больше, чем больше масса планеты, а также чем ближе тело находится к ней.Поле тяготения Земли можно представить в виде большой сферы, в которой силовые линии направлены к центру планеты. В нём. В том же направлении увеличивается сила притяжения, действующая на каждую точку геосферы. Этой силы достаточно чтобы вода океанов не стекала с поверхности Земли. Вода удерживается во впадинах, но легко растекается по ровной поверхности.Силы гравитации постоянно действуют на вещество Земли.

Более тяжёлые частицы  притягиваются к ядру, вытесняя более  лёгкие, которые всплывают в направлении  земной поверхности. Происходит медленное встречное движение лёгкого и тяжёлого вещества. Это явление получило название гравитационной дифференциации.

В результате - в теле планеты сформировались геосферы с разной средней плотностью вещества.Масса Земли более чем в 80 раз превышает массу своего спутника. Поэтому Луна удерживается на околоземной орбите и ввиду огромной массы Земли смещается, постоянно, в сторону её геометрического центра на 2 – 3 км. Земля тоже испытывает притяжение своего спутника, несмотря на огромное расстояние- 3,84*105 км.«Лунные приливы» - самое заметное воздействие. Через каждые 12ч 25 мин, под влиянием массы Луны, уровень земного океана повышается, в среднем на 1 м. Через 6 ч уровень воды понижается. На разных широтах этот уровень разный. В Охотском и Беринговом морях – 10м, залив Фанди – 18м. Приливные «горбы» твёрдой поверхности - меньше 35 см. В связи с большой длительностью такой волны такие пульсации незаметны без специальных измерений.

 

                              7. Воздействие малых космических  тел.

Обобщённо небесные тела, способные  «атаковать» Землю, называют метеороидами (метеоритными телами) - это либо осколки астероидов, столкнувшихся в космическом пространстве, либо фрагменты, остающиеся при выпаривании комет. Если метеороиды достигают земной атмосферы, их называют метеорами (иногда, болидами), а если они падают на земную поверхность, то получают название метеоритов.

Сейчас на поверхности  Земли выявлено 160 кратеров, возникших  от столкновения с космическими телами. Перечислим шесть самых примечательных:50 тысяч лет назад, кратер Берринджера (Аризона, США), окружность 1230 м - от падения метеорита диаметром 50 м. Это самый первый кратер от падения метеорита, обнаруженный на Земле. Его так и назвали «метеоритным». Кроме того, он сохранился лучше других.35 млн. лет назад, кратер бухты Чесапик (Мэриленд, США), окружность 85 км - от падения метеорита диаметром 2-3 км. Катастрофа, в результате которой он возник, раздробила скальное основание на 2 км в глубину, образовав резервуар соленой воды, который по сей день влияет на распределение подземных водных потоков.37,5 млн. лет назад, кратер Попигай (Сибирь, Россия), окружность 100 км - от падения астероида диаметром 5 км. Кратер усыпан промышленными алмазами, которые возникли в результате воздействия на графит чудовищных давлений при ударе.65 млн. лет назад, Чиксулубский бассейн (Юкатан,Мексика), окружность 175 км - от падения астероида диаметром 10 км. Предполагается, что взрыв этого астероида вызвал грандиозные цунами и землетрясения силой 10 баллов.1,85 млрд. лет назад, кратер Садбери (Онтарио, Канада), окружность 248 км - от падения кометы диаметром 10 км. На дне кратера благодаря теплу, выделенному при взрыве, и запасам воды, содержавшимся в комете, возникла система горячих источников. По периметру кратера найдены крупнейшие в мире залежи никелевой и медной руды.2 млрд. лет назад, купол Вредефорт (Южная Африка), окружность 378 км - от падения метеорита диаметром 10 км. Самый древний и (на момент катастрофы) самый крупный из подобных кратеров на Земле. Он возник в результате самого массированного выделения энергии за всю историю нашей планеты.

По общему признанию, самые  впечатляющие открытия последних лет  в области палеоклиматологии сделаны при бурении ледниковых щитов иисследованиях ледяного керна в центральных районах Гренландии и Антарктиды, где ледовая поверхность практически никогда не тает, а значит и содержащаяся в ней информация о температуре приземного слоя атмосферы сохраняется на века. Совместными усилиями российских, французских и американских учёных по изотопному составу ледяного керна из сверхглубокой ледовой скважины (3350м) на российской антарктической станции «Восток» удалось воссоздать климат нашей планеты за этот период. Так вот, средняя температура в районе станции «Восток» за эти 420 тысяч лет колебалась примерно от- 54 до - 77оС. В-третьих, во время последнего «ледникового периода» (20 – 10 тысячелетий тому назад) климат в средней полосе России, включая Сибирь, мало отличался от сегодняшнего, особенно летом. Об этом свидетельствует изотопная метка атмосферных осадков, которая сохраняется сотни тысяч лет во льду полярных ледников и в вечной мерзлоте, почвенных карбонатах, фосфатах костей млекопитающих, древесных кольцах и т.п.

Основную опасность в  глобальном масштабе представляют астероиды  с радиусом больше 1 км. Столкновение с меньшими по размеру телами может вызывать значительные локальные разрушения (Тунгусское явление), но не приводит к глобальным последствиям. Чем больше астероид, тем меньше вероятность столкновения его с Землёй.

Каждый год регистрируется 2-3 пролёта на расстоянии 0,5-3 млн. км от Земли тел диаметром 100-1000м. Пренебрегая при грубом подсчёте гравитационным привлечением со стороны Земли и считая столкновения случайными, можно определить частоту столкновения с телами указанного размера. Для этого: необходимо умножить поперечное сечение Земли, равное 4•Pi•(6400 км)2(2), на частоту пролёта астероида в расчёте на 1 км2 - она составляет приблизительно ~3/4•Pi•1,7 млн. км2(3). Обратная величина от вычисленного значения и будет равна количеству лет, проходящему в среднем между двумя столкновениями. Получается цифра ~ 25 тыс. лет (на самом деле несколько меньше, если учесть ещё влияние земной гравитации и то, что некоторые пролёты остались незамеченными). Это вполне согласуется с данными.

Столкновения с крупными астероидами происходят довольно редко, в сравнении с длительностью  истории человечества. Тем не менее, редкость явления не означает периодичности; поэтому, учитывая случайный характер явления, нельзя исключить столкновения в любой момент времени - разве что вероятность такого столкновения достаточно мала, по отношению к вероятности других угрожающих отдельному человеку катастроф (природные катаклизмы, аварии и т.д.). Однако: в геологическом и даже в биологическом масштабе времени столкновения не так уж редки. За всю историю Земли на неё упало несколько тысяч астероидов диаметром около 1 км и десятки тел диаметром более 10 км. Жизнь на Земле существует гораздо дольше.

Информация о работе Роль космоса в развитии биосферы