Автор работы: Пользователь скрыл имя, 16 Ноября 2013 в 15:35, контрольная работа
В наши дни всё чаще даёт о себе знать проблема низкой производительности каких-либо расчётов. Вот и транспортная задача не стала исключением. С возрастанием количества точек для развоза грузов переборные алгоритмы хотя и продолжают выдавать оптимальные результаты расчёта, но делают это слишком медленно.
Поэтому, перед нами встаёт задача убыстрить, насколько это возможно, расчёты маршрутов автотранспорта.
УДК 004.021
ПРИМЕНЕНИЕ
ГЕНЕТИЧЕСКОГО АЛГОРИТМА К
Студент гр. 07-ИУ-1 Степанов М.М.
Руководитель: д.т.н., доц. Новицкий В.О.
В наши дни всё чаще даёт о себе знать проблема низкой производительности каких-либо расчётов. Вот и транспортная задача не стала исключением. С возрастанием количества точек для развоза грузов переборные алгоритмы хотя и продолжают выдавать оптимальные результаты расчёта, но делают это слишком медленно.
Поэтому, перед нами встаёт задача убыстрить, насколько это возможно, расчёты маршрутов автотранспорта.
В рамках этой задачи (оптимизации транспортной логистики) предполагается применение как переборных алгоритмов, таких как метод ветвей и границ, метод ближайшего соседа, так и введение эвристических алгоритмов(генетического алгоритма, алгоритма муравья, отжига), а также их комбинаций.
Генетические
алгоритмы применяются для
Генетический алгоритм - один из эвристических алгоритмов, которые в последнее время всё более востребованы. В частности, его можно применить к задаче коммивояжёра( транспортной задаче). Предлагаемый алгоритм может стать развитием задачи управления маршрутами на хлебокомбинате.
Общая схема алгоритма(рис. 1):
Рис.1 Схема работы генетического алгоритма
Этот набор действий повторяется итеративно, так моделируется «эволюционный процесс», продолжающийся несколько жизненных циклов (поколений), пока не будет выполнен критерий остановки алгоритма. Таким критерием может быть:
Генетические операторы:
Задача для
генетического алгоритма
Мы предполагаем сделать этап инициализации более осмысленным – генотип будет определяться не случайным образом, а будет предоставляться одним из быстрых эвристических алгоритмов(например, алгоритм муравья), и затем усовершенствоваться с помощью генетического алгоритма.
Особи в поколении оцениваются с учётом их приспособленности(английский термин – fitness[1]). Оценка происходит по заранее заданным критериям.
Из полученного множества решений («поколения») с учётом значения «приспособленности» выбираются решения (обычно лучшие особи имеют большую вероятность быть выбранными) для последующего скрещивания.
Размножение в разных алгоритмах определяется по-разному — оно, конечно, зависит от представления данных. Главное требование к размножению — чтобы потомок или потомки имели возможность унаследовать черты обоих родителей, «смешав» их каким-либо способом.
Мутация проходит так: есть некоторая доля мутантов(процент мутации), являющаяся параметром генетического алгоритма, и на шаге мутаций нужно выбрать этот процент особей, а затем изменить их в соответствии с заранее определенными операциями мутации.
Работа операторов скрещивания:
Одноточечное скрещивание: случайным образом выбираются точки разрыва родительских хромосом, которые потом «склеиваются» для получения потомства.
Многоточечное скрещивание: случайным образом выбираются две точки разрыва, в которых «разрываются» родительские хромосомы, и из которых образуются дочерние.
Мутация выполняется в соответствии с определёнными операциями, которые задаются в зависимости от конкретной задачи.
Задача коммивояжёра.
Наша задача - это геометрическая задача коммивояжёра (также называемая планарной или евклидовой, когда матрица расстояний отражает только расстояния между точками на плоскости, без учёта стоимости, времени маршрута и т.д.). Наш критерий отбора очень прост - получить кратчайший маршрут.
Скрещивание в задаче коммивояжёра:
Прежде всего, нужно сказать, что в генетическом алгоритме всё основано на случайных событиях. Мы случайно генерируем наш маршрут, с тем только условием, что мершрут проходит через все города, причём только один раз. Далее, после генерации маршрута, мы случайно выбираем точку скрещивания. После этого мы можем произвести скрещивание, но тут и возникают проблемы.
Если в одной части маршрута окажутся города, которые уже есть во второй части скрещиваемого маршрута, то нарушается условие задачи(каждый город обходится только один раз).
Как поступить в этой ситуации?
А поступаем мы очень просто. Не добавляем те точки из родительского гена, которые уже есть в гене ребёнка.
Таким образом, соблюдается условие нашей задачи.
Та же самая проблема возникает при проведении скрещивания в нескольких местах. Нарушается условие задачи.
Существует несколько способов решения проблемы перекрёстного скрещивания.
Первое решение - частично отображаемое скрещивание.
Случайным образом находим две точки разрыва. При формировании потомков вначале производим обмен частей находящихся между точками разрыва. Затем расставляем оставшиеся позиции от соответствующих хромосом по порядку (в данном случае сверху вниз) до возникновения конфликта (номер вершины повторяются в уже сформированной части хромосомы). Если произошел конфликт, то записываем не конфликтующий номер, а номер из соседней хромосомы. Так продолжается до полного разрешения конфликтов.
Второе решение - это упорядоченное скрещивание. Очень похоже на частично отображаемое, за тем исключением, что после обмена частями, находящимися между точками разрыва, мы копируем оставшиеся хромосомы не по порядку, а сначала в позицию после второй точки разрыва, а потом уже в начало, до первой точки разрыва.
Третий вариант - это скрещивание циклическое.
Формирование
потомка идет по шагам. Сначала в
самую верхнюю незанятую
Для чего же нужно столько различных способов мутации?
Дело в том, что главный бич многих генетических алгоритмов — недостаток разнообразия в особях. Достаточно быстро выделяется один-единственный генотип, который представляет собой локальный максимум, а затем все элементы популяции проигрывают ему отбор, и вся популяция «забивается» копиями этой особи. Это — один из способов борьбы с таким нежелательным эффектом.
Мутации в задаче коммивояжёра.
Так же, как и в случае со скрещиванием, мы не можем просто изменить одну "хромосому" и ожидать от этого адекватного результата.
Что делать в этой ситуации?
Так как нельзя просто изменить одну хромосому в условиях нашей задачи, то можно просто поменять их местами(рис. 8.2). Таким образом, минимальное число хромосом, участвующих в мутации, будет равняться двум.
Мутация множества городов. Заключается в следующем: Случайным образом выбираем две точки разрыва, а затем меняем местами "хромосомы" между этими двумя точками, конечно, тоже случайным образом.
Надо отметить, что минимальное число "хромосом", участвующих в данной мутации - четыре, так как при меньшем количестве нам просто нечего будет менять.
Использование генетического алгоритма для решения задачи коммивояжёра позволяет снизить скорость поиска области наилучших решений за счёт того, что этот алгоритм не перебирает все возможные значения, а, подражая биологической эволюции, отбирает на каждом шаге всё лучшие решения.
Совместное же его использование с другими эвристическими алгоритмами, которые будут предоставлять начальные значения, а также использование переборных методов для локальной оптимизации в операторах мутации могут дать дополнительный прирост в скорости.
Литература:
[1] Емельянов В. В., Курейчик В. В., Курейчик В. М. Теория и практика эволюционного моделирования. — М: Физматлит, 2003. — С. 432. — ISBN 5-9221-0337-7
[2] Курейчик В. М., Лебедев Б. К., Лебедев О. К. Поисковая адаптация: теория и практика. — М: Физматлит, 2006. — С. 272. — ISBN 5-9221-0749-6
[3] Гладков Л. А., Курейчик В. В., Курейчик В. М. Генетические алгоритмы: Учебное пособие. — 2-е изд.. — М: Физматлит, 2006. — С. 320. — ISBN 5-9221-0510-8
[4] Рутковская Д., Пилиньский М., Рутковский Л. Нейронные сети, генетические алгоритмы и нечеткие системы = Sieci neuronowe, algorytmy genetyczne i systemy rozmyte. — 2-е изд.. — М: Горячая линия-Телеком, 2008. — С. 452. — ISBN 5-93517-103-1
Информация о работе Применение генетического алгоритма к решению задачи коммивояжёра